Contents

List of Contributors v
Preface to the Fourth Edition ix
Preface to the First Edition xi
Historical Introduction: The Drug Treatment of Epilepsy from 1857 to 2015 xiii

Section I – Introduction
(Lead editor: Simon Shorvon)
1 Definition (Terminology) and Classification in Epilepsy: A Historical Survey and Current Formulation, with Special Reference to the ILAE Simon Shorvon
2 Differential Diagnosis of Epilepsy Mark Cook
3 Mechanisms of Epileptogenesis Giuliano Avanzini and Silvana Franceschetti
4 Antiepileptic Drug Discovery H. Steve White and Melissa Barker-Haliski
5 Antiepileptic Drug Development Dieter Schmidt
6 Mechanisms of Antiepileptic Drug Action Matthew C. Walker and Rainer Surges
7 Mechanisms of Drug Resistance and Tolerance Wolfgang Löscher and Dieter Schmidt
8 Epilepsy Biomarkers Jerome Engel, Jr. and Asla Pitkänen

Section II – Principles of Medical Management
(Lead editor: Simon Shorvon)
9 General Principles of Medical Management Emilio Perucca
10 Pharmacokinetic Optimization of Therapy Svein I. Johannessen, Cecilie Johannessen Landmark and Emilio Perucca
11 Management of Chronic Active Epilepsy in Adults Simon Shorvon
12 Management of Epilepsy in Remission Patrick Kwan, Hown Leung and Xiaoting Hao
13 Management of Epilepsy in Neonates and Infants Elissa G. Yozawitz and Solomon L. Moshé
14 Management of Childhood Epilepsy Syndromes Colin D. Ferrie
15 Management of Epilepsy in People with Intellectual Disabilities Eyler Brodtkorb
16 Management of Epilepsy in the Elderly Hiba Arif Haider and Lawrence J. Hirsch
17 Emergency Treatment of Seizures and Status Epilepticus Matthew C. Walker and Simon Shorvon
18 Management of Medical Comorbidity Associated with Epilepsy Gagandeep Singh
19 Psychiatric Features of Epilepsy and their Management Brent Elliott and Simon Shorvon
20 Prevention and Management of Side-effects of Antiepileptic Drugs Gaetano Zaccara and Piero Perucca
21 Ketogenic Diets Eric H. Kossoff and Courtney A. Haney
22 Complementary and Alternative Treatments for Epilepsy Sallie Baxterdale
23 Reproductive Aspects of Epilepsy Treatment Torbjörn Tomson
24 Genetic Counselling in Epilepsy Federico Zara
25 Drug Interactions Edoardo Spina and Domenico Italiano
26 Medical Treatment of Epilepsy in Resource-Poor Countries Patrick Adjei

Section III – Antiepileptic Drugs
(Lead editor: Emilio Perucca)
27 Introduction to the Choice of Antiepileptic Drugs Emilio Perucca
28 Acetazolamide Miri Y. Neufeld
29 Adrenocorticotropic Hormone and Corticosteroids Federico Vigevano and Maria Roberta Cilo
30 Benzodiazepines Used in the Treatment of Epilepsy Eugen Trinka and Francesco Brigo
31 Brivaracetam Joseph D’Souza and Emilio Perucca
32 Carbamazepine Torbjörn Tomson and Svein I. Johannessen
List of Contributors

Patrick Adjei, MBCHB MWACP PhD
Lecturer
Neurology Unit
Department of Medicine and Therapeutics
School of Medicine and Dentistry
University of Ghana
Accra, Ghana

Giuliano Avanzini, MD
Emeritus Professor of Neurology
C. Besta Foundation
Neurological Institute
Milan, Italy

Christine B. Baca, MD MSHS
Assistant Professor of Neurology
Department of Neurology
University of California
and VA Greater Los Angeles Health Care System
Los Angeles, USA

Nicholas M. Barbaro, MD
Betsey Barton Professor and Chairman of Neurosurgery
and Medical Director
Department of Neurological Surgery and IU Health Neuroscience Center
Indiana University School of Medicine
Indianapolis, USA

Melissa Barker-Haliski, PhD
Associate Director
Anticonvulsant Drug Development Program
University of Utah
Salt Lake City, USA

Michel Baulac, MD
Professor of Neurology and Neuroanatomy
University Pierre and Marie Curie
Hôpital de la Pitié-Salpêtrière,
Paris, France

Sallie A. Baxendale, PhD
Consultant Neuropsychologist
UCL Institute of Neurology
University College London
London, UK

Gregory K. Bergey, MD
Professor of Neurology and Director
Johns Hopkins Epilepsy Center
Johns Hopkins University School of Medicine
Baltimore, USA

Adriana Bermeo-Ovalle, MD
Assistant Professor
Department of Neurological Sciences
 Rush University Medical Center
Chicago, USA

Meir Bialer, PhD MBA
David H. Eisenberg Professor of Pharmacology
Institute for Drug Research
School of Pharmacy
Faculty of Medicine
The Hebrew University of Jerusalem
and David R. Bloom Center for Pharmacy
Jerusalem, Israel

Victor Biton, MD
Director of Arkansas Epilepsy Program and Clinical Trials, Inc.
Little Rock
Arkansas, USA

Paul Boon, MD PhD
Professor and Chairman
Department Neurology Ghent University Hospital
Belgium
and Director Research and Development
Academic Center for Epileptology
Kempenhaeghe-Maastricht
The Netherlands

Francesco Brigo, MD
Honorary Research Associate
Department of Neurological and Movement Sciences
University of Verona
Verona, Italy

Martin J. Brodie, MB ChB MD FRCP
Professor of Medicine and Clinical Pharmacology and Director, Epilepsy Unit
Western Infirmary
Glasgow, UK

Eylert Brodtkorb, MD, PhD
Senior Consultant, Professor
Department of Neurology and Clinical Neurology
St. Olav's Hospital
Trondheim University Hospital
Trondheim, Norway

Christine Bulteau, MD
Neurological Paediatrician
Fondation Ophtalmologique Rothschild
Paris, France
Inserm U 1129 and Paris Descartes University
Gif sur Yvette, France

Gregory D. Cascino, MD FAAN
Whitney MacMillan, Jr. Professor of Neuroscience and Enterprise Director of Epilepsy
Mayo Clinic and Mayo Clinic College of Medicine
Rochester, USA

Joshua J. Chern, MD PhD
Pediatric Neurosurgery Associate
Neurosurgery Department
Emory University
Atlanta, USA

Derek J. Chong, MD MSc
Assistant Professor of Neurology
Director, Epilepsy and EEG Consult Services
New York University Comprehensive Epilepsy Center
New York, USA

Maria Roberta Cilio, MD PhD
Professor, Neurology and Pediatrics
Division of Epilepsy and Clinical Neurophysiology
BenNof Children's Hospital
University of California
San Francisco, USA

Hannah R. Cock, BSc MD FRCP
Reader in Clinical Neurology and Honorary Consultant Neurologist
Atkinson Morley Regional Neuroscience Centre
St George's University Hospitals NHS Foundation Trust
and St George's University of London
London, UK

Youssef G. Comair, MD FRCS
Dean and Professor of Surgery
Gilbert and Rose-Marie Chagoury School of Medicine
Lebanese American University
Beirut, Lebanon

Mark J. Cook, MB BS MD
Sir John Eccles Chair of Medicine and Director of Clinical Neurosciences
University of Melbourne and St Vincent's Hospital
Melbourne, Australia

J. Helen Cross, MB PhD OBE
Professor in Paediatric Neurology
UCL Institute of Child Health
University College London
and Great Ormond Street Hospital for Children
NHS Trust
London, UK

Olivier Delalande, MD
Neurosurgeon
Fondation Ophtalmologique Rothschild
Paris, France

Norman Delanty, BSc FRCPi
Consultant Neurologist and Director
Epilepsy Programme
Beaumont Hospital, RCSI
Dublin, Ireland

Georg Dorfmüller, MD
Director of Neurosurgery
Fondation Ophtalmologique Rothschild
Paris, France
Inserm U 1129 and Paris Descartes University
Gif sur Yvette, France
Joseph D’Souza, PhD
Senior Director
UCB Pharma
Smyrna, USA

Mervyn J. Eadie, AO MD PhD FRCP Ed FRACP
Emeritus Professor of Clinical Neurology and Neuropharmacology
and Honorary Consultant Neurologist
University of Queensland and Royal Brisbane and Women’s Hospital
Brisbane, Australia

Christian E. Elger, MD FRCP
Professor and Director
Department of Epileptology
University of Bonn Medical Center
Bonn, Germany

Brent Elliott, MBBS MRC Psych
Consultant Neuropsychiatrist
Epilepsy Society
Chalfont St Peter, UK

Jerome Engel, Jr., MD PhD
Jonathan Sinesy Distinguished Professor of Neurology
Neurobiology, and Psychiatric and Biobehavioral Sciences
Director UCLA Seizure Disorder Center
David Geffen School of Medicine at University of California
Los Angeles, USA

Edward Faught, MD
Professor, Department of Neurology and Director, Emory Epilepsy Program
Emory University School of Medicine
Atlanta, USA

Colin D. Ferrie, MD FRCPCH
Consultant Paediatric Neurologist
Department of Paediatric Neurology
Leeds General Infirmary
Leeds, UK

Robert S. Fisher, MD PhD
Maslah Saul MD Professor of Neurology
Stanford University School of Medicine
Palo Alto, USA

Silvana Franceschetti, MD PhD
Head of Department of Neurophysiology
C. Besta Foundation
Neurological Institute
Milan, Italy

Jacqueline A. French, MD
Professor
New York University Comprehensive Epilepsy Center
New York, USA

Itzhak Fried, MD PhD
Professor
Department of Neurosurgery
University of California
Los Angeles, USA
and Tel-Aviv Medical Center and Tel-Aviv University
Tel-Aviv, Israel

Thomas J. Gianaris, MD
Neurosurgeon Department of Neurological Surgery
Indiana University School of Medicine
Indianapolis, USA

Tracy A. Glauser, MD
Professor
Pediatrics and Neurology
Children’s Hospital Medical Center C-5
Cincinnati, USA

Karelin Goffin, MD PhD
Assistant Professor
Department of Nuclear Medicine
University Hospital Leuven
Department of Imaging & Pathology
KU Leuven
Leuven, Belgium

Hiba Arif Haider, MD
Fellow in Clinical Neurophysiology/Epilepsy
Emory University School of Medicine
Atlanta, USA

Courtney A. Haney, RD
Registered Dietitian
Johns Hopkins University School of Medicine
Baltimore, USA

Xiaoting Hao, MD
Neurologist
The West China School of Medicine and West China Hospital
Chengdu, China

Jason S. Haughtman, MD PhD
Staff Pediatric Neurosurgeon
Department of Neurosurgery
Kaiser Permanente Los Angeles Medical Center
Los Angeles, USA

Lawrence J. Hirsch, MD
Professor of Neurology
Chief, Division of Epilepsy and EEG and Co-Director
Comprehensive Epilepsy Center
Yale University School of Medicine
New Haven, USA

Martin Holtkamp, MD
Friedrich von Bodelschwingh-Professor for Clinical and Experimental Epileptology
Epilepsy Center Berlin-Brandenburg
Department of Neurology
Charité – Universitätsmedizin Berlin
Berlin, Germany

Domenico Italiano, MD PhD
Research Fellow
Department of Clinical and Experimental Medicine
University of Messina
Messina, Italy

Svein I. Johannessen, PhD
Senior Researcher
Department of Pharmacology
The National Center for Epilepsy
Oslo University Hospital
Oslo, Norway

Marilyn Jones-Gotman, PhD
Professor
Department of Neurology and Neurosurgery
Montreal Neurological Institute
McGill University
Montreal, Canada

Julien Jung, MD PhD
Neurologist
Lyon Neurological Hospital
Lyon Paediatric Hospital and MEG department (CERMEP)
Lyon, France

Reetta Kälviäinen, MD PhD
Professor of Clinical Epileptology/Neurology
and Director
Kaupo Epilepsy Center
University of Eastern Finland and Kuopio University Hospital
Kuopio, Finland

Andres M. Kanner, MD
Professor of Clinical Neurology
Director
Comprehensive Epilepsy Center and Chief Epilepsy Section
Department of Neurology
University of Miami Miller School of Medicine
Miami, USA

Roopam M. Karia, MD
Clinical Instructor
Department of Pediatrics
Jersey Shore University Medical Center
Neptune, USA

Tapani Keränen, MD PhD
Senior Medical Officer
National Institute for Health and Welfare
Helsinki, Finland

John F. Kerrigan, MD
Associate Professor of Child Health and Neurology
University of Arizona College of Medicine
Phoenix
Barrow Neurological Institute at Phoenix Children’s Hospital
Phoenix, USA

Hyunmi Kim, MD PhD MPH
Associate Professor
Division of Pediatric Neurology and Director
Emory Pediatric Epilepsy Program
Emory University
Atlanta, USA

Neil D. Kitchen, MD FRCS
Consultant Neurosurgeon
Victor Horsley Department of Neurosurgery
National Hospital for Neurology and Neurosurgery
London, UK

Eric H. Kossoff, MD
Associate Professor, Pediatrics and Neurology
Johns Hopkins University School of Medicine
Baltimore, USA

Günter Krämer, MD
Neurologist
Neurocentre Bellevue
Zürich, Switzerland

Patrick Kwan, MB BChir PhD FRACP
Professor of Neurology
University of Melbourne
and Head of Epilepsy
Royal Melbourne Hospital
Melbourne, Australia
Andrea G. Scherer, MD
Neurosurgery Resident
Indiana University School of Medicine
Indianapolis, USA

Dieter Schmidt, MD PhD
Epilepsy Research Group
Berlin, Germany

Arjune Sen, BM BCh MA (Oxon) PhD FRCP
Consultant Neurologist and BRC Senior Research Fellow in Epileptology
Oxford Epilepsy Research Group
National Institute of Health Research Biomedical Research Centre
The John Radcliffe Hospital
Oxford, UK

Simon Shorvon, MA MB BChir MD FRCP
Professor in Clinical Neurology and Consultant Neurologist
UCL Institute of Neurology
University College London
National Hospital for Neurology and Neurosurgery
London, UK

Graeme J. Sills, BSc PhD
Senior Lecturer in Pharmacology
University of Liverpool
Liverpool, UK

Gagandeep Singh, DM (Neurology)
Professor and Head Department of Neurology
Dayanand Medical College
Ludhiana, India
and Institute of Neurology, Queen Square,
London, UK

Adithya Sivaraju, MD MHA
Epilepsy Fellow
Yale University
New Haven, USA

Michael C. Smith, MD
Professor and Director of Rush Epilepsy Center
Department of Neurological Sciences
Rush University Medical Center
Chicago, USA

Ernest R. Somerville, MB BS FRCR
Associate Professor of Neurology and Director Comprehensive Epilepsy Service
Prince of Wales Hospital
University of New South Wales
Sydney, Australia

Dennis Spencer, MD
Harvey and Kate Cushing Professor and Chair Department of Neurosurgery
Yale University
New Haven, USA

Eduardo Spina, MD PhD
Professor of Pharmacology
Department of Clinical and Experimental Medicine
University of Messina
Messina, Italy

Hermann Stefan, MD
Professor of Neurology
University Hospital Erlangen
Neurological Clinic – Biomagnetism
Erlangen, Germany

John M. Stern, MD
Professor of Neurology
Department of Neurology
University of California
Los Angeles, USA

Rainer Surges, MD
Lead Consultant
Department of Epileptology
University Hospital Bonn
Bonn, Germany

Torbjörn Tomson, MD PhD
Professor of Neurology and Epileptology
Department of Clinical Neuroscience
Karolinska Institutet
Stockholm, Sweden

Eugen Trinka, MD MSc
Chair of Department of Neurology
Paracelsus Medical University Salzburg
Christian Doppler Klinik and Centre for Cognitive Neuroscience
Salzburg, Austria

Christopher E. Uff, PhD FRCS
Consultant Neurosurgeon
Head of Neurotrauma and Neurovascular Surgery
Department of Neurosurgery
Royal London Hospital
London, UK

Barbara M. Van de Wiele, MD
Clinical Professor
Department of Anesthesiology and Perioperative Medicine
David Geffen School of Medicine at University of California
Los Angeles, USA

Wim Van Paesschen, FRCP PhD
Professor
Department of Neurology
University Hospital Leuven
Head of Laboratory for Epilepsy Research
Department of Neurosciences
KU Leuven
Leuven, Belgium

Federico Vigevano, MD
Director of Neuroscience Department
Bambino Gesù Children’s Hospital
Rome, Italy

Matthew C. Walker, MA MB BChir PhD FRCP
Professor in Clinical Neurology and Consultant Neurologist
UCL Institute of Neurology
University College London and National Hospital for Neurology and Neurosurgery
London, UK

Bernd Weber, MD
Professor of Neuroradiology
Department of Epileptology
University of Bonn Medical Center
Bonn, Germany

Nicholas M. Wetjen, MD FAANS FACS FAAP
Associate Professor of Neurosurgery and Pediatrics
Mayo Clinic
Rochester, USA

James R. White, MD
Epileptologist
University of Rochester
St Paul, USA

H. Steve White, PhD
Professor of Pharmacology and Toxicology
Director of Anticonvulsant Drug Development Program
Department of Pharmacology and Toxicology
University of Utah
Salt Lake City, USA

Gabriele Ch. Wohlrab, MD
Epileptologist and Pediatric Neurologist
Department of Pediatric Neurology
Epilepsy Center, Children’s Hospital
University of Zurich
Zurich, Switzerland

Elissa G. Yozawitz, MD
Assistant Professor
Department of Neurology and Pediatrics
Albert Einstein College of Medicine and Montefiore Medical Center
New York, USA

Gaetano Zaccara, MD
Director of the Unit of Neurology
Department of Medicine
San Giovanni di Dio Hospital
Florence, Italy

Federico Zara, PhD
Professor
Department of Neuroscience and Laboratory of Neurogenetics
G. Gaslini Institute
Genoa, Italy
Preface to the Fourth Edition

The first edition of this book was published in 1996, the second in 2004, the third in 2009, and this edition, the fourth, in 2016. In the 20 years that have passed since the appearance of the first edition, therapy in epilepsy has evolved perhaps not in quantum leaps but certainly incrementally. The additive effect of these incremental changes has been very considerable and this is reflected in these volumes. Furthermore, over the course of the four editions, the editors have tightened their grip on the quality of chapters and of writing, and tried progressively to ensure that the text provides accurate and well-grounded information. Throughout all four editions, the basic format of the book has not changed. The same section structure has been maintained, and all aspects of clinical medical therapy are covered. The number of chapters has grown from 63 in the first edition to 81 in this. An historical introduction has been added to provide a synoptical overview of the evolution of the treatment of epilepsy between 1860 and the present day. The focus of the entire book is on treatment, and we have endeavoured to produce a thoroughly up-to-date and detailed, independent and authoritative account of all aspects of modern clinical therapy. The authorship has changed in crucial ways, and each of our authors, new and old, have been urged to sift information carefully and to take a considered and definitive view of their topic. Tabulated information has been included where possible, and summary tables have been drawn up at the head of each chapter on individual drugs. One major change to the format has been the introduction of full colour to the text, which we feel improves the readability and clarity as well as the aesthetic aspects of the book. There is also an enhanced online presence.

The passage of 20 years is a good time to reflect on the changes of treatment that have occurred during this time. Over this period, perhaps the most important advances have been in the understanding of the molecular and neurophysiological bases of epilepsy, and discoveries in these areas are beginning to feed through into clinical therapeutics. The impact of clinical genetics on treatment remains relatively marginal, but neuroimmunology is changing clinical practice and carries the promise of quite fundamental changes in approach to therapeutics in epilepsy. Over this period, too, 11 new drugs have been introduced into global clinical practice for epilepsy and also a variety of new approaches to the treatment of acute seizures and status epilepticus. On the surgical side, most of the advances have been technical rather than theoretical, and perhaps the biggest change has been the various forms of brain stimulation now entering clinical practice. All of these developments are included in this volume. We have also tried to keep the book at the cutting edge, by including details of what we predict will be the next changes in clinical practice. We have taken a global view, hoping to cover the variations in practice in the many different settings around the world, and have chosen our authorship, from 17 countries, to reflect this global reach. The regulatory and administrative frameworks governing pharmaceutical and clinical activity continue to change and one thing complained about by all is the enormous growth in administrative oversight. Too much bureaucracy is the enemy of innovation, and one wonders whether the balance is currently correctly struck. In the book, these aspects too are covered.

The purpose of the book has not changed over the four editions and, as in the preface of the third edition, I here quote what was written in the second edition:

The primary objective is unaltered [from the first edition] – namely to provide a systematic review of the whole field of contemporary therapy in epilepsy. The emphasis is, as before, on a text that provides practical information, useful for the clinician but which is comprehensive, accurate and concisely given. We [the editors] have asked the contributors to examine the evidential basis of both conventional and experimental therapies and have attempted to cover all therapeutic options… It remains the basic purpose of the book to guide clinical practice and rational therapy, and to be a source of reference for clinicians at every level.

I here wish also to record my gratitude to my two co-editors. All three of us edited the last edition, and my co-editors have undertaken the task of producing a new edition with undiminished enthusiasm and expertise. They possess unparalleled skill in both book editing and in epileptology, and the mixture of the two is unbeatable. Extensive editing has been carried out in parts of the book to ensure a consistency of approach and style and to ensure clarity and accuracy, and this job has been superbly done. Of course, also, enormous thanks from all three of us go to all the chapter authors. Many are new to the book, some have contributed before, and some indeed have been called upon for all four editions. All have produced superb chapters, and dealt with our tire-some editing queries and suggestions with universal good humour. The timetable imposed on the book was very tight, with chapters written within 8 months of commissioning and production within 9 months of receipt of the completed draft manuscript. Despite this, the book kept to schedule. The standard of the writing is high and a tribute to the commitment and work of all the authors; the world of epileptology is lucky to have such a talented group of writers. I also would like to thank Wiley Blackwell for suggesting the new edition, and for producing it to such a high standard. It has been a particular pleasure to work with Claire Bonnett who is a delightful person and who became our publisher half way through the project. She has provided excellent advice, ideas and guidance throughout on the intricacies of book publication. The production aspects were outsourced to PM-Bookpublishing, with the project led by Kathy Splywczak, who has been an extraordinarily efficient colleague, extremely responsive to all the detailed requests for
amendments by the editors and authors, and a joy to work with; the book has been greatly improved by her expertise, and that of her colleagues, and it would not be possible to have had a better team running the production aspects. The book is embedded in our clinical practices, and our final thanks must go to our patients.

A thorough understanding of epilepsy is gained best by listening to, and discussing with, those whom we see in our clinics, and it is the privilege of medicine to be able to gain experience and knowledge in this way. Our book reflects our clinical experience, and we hope will improve our own and our readers’ therapeutic knowledge and practice.

Simon Shorvon, for the editors
London, 2015
Preface to the First Edition

Epilepsy is one of the oldest recorded diseases. Throughout its history, strange and varied methods of therapy have been employed. Medicaments, potions, ointments, amulets, enemas, exorcism, magic, spiritualism, magnetism, galvanism, dietary regimens, surgical and physical and moral and behavioural therapies have all been popular; reputations have been made (less often broken) and are still being made by therapeutic manoeuvres, yet none has provided the cure. Within this compass have been some effective therapies but others which are ill-directed, useless, misleading, and at times frankly fraudulent. Epilepsy is, of course, a difficult taskmaster for the inquisitive. Its fluctuating nature, its ready influence by environmental factors, its easy confusion with hysterical disorders, its multi factorial causation and its tendency to spontaneous remission, all render judgements of treatment difficult. Such confounding factors allowed ineffective and fashionable therapies to flourish in the past, and today marketing and commercial pressures add to the difficulties of evaluation.

This book is an attempt to catalogue the contemporary treatment of epilepsy in the late 1990s, both medical and surgical, in a comprehensive, concise, balanced and practical manner. Each chapter has been commissioned from an acknowledged authority, known personally to the editors as knowledgeable, intellectually honest and capable of clear communication. We have covered all matters of importance to those treating patients with epilepsy, and provide clear clinical advice on these issues. We have avoided unsupported speculation and highly biased opinion, but have asked our contributors to be as up-to-date as is compatible with our evidence-based exigencies. These are difficult and challenging requirements, which, I hope, have been largely realized.

What are the boundaries of the volume? When bromide was introduced in 1857, a new era can be said to have been entered, with I hope, have been largely realized.

Exigencies.

Effective options for most epileptic patients. In this sense, the book should be a useful platform for all doctors treating epilepsy. Although the book is primarily about the treatment of epilepsy, we have also included an initial section of six chapters, the purpose of which is to place therapy in context. In these chapters we have also highlighted those areas in which rapid advances are being made, for herein will the context of treatment also change (the chapters on pathophysiology, the developmental basis of epilepsy, diagnosis and prognosis, and on economic cost, for example).

The information contained within the pages of this book is sufficiently comprehensive to act as a reference for specialists, and concise enough for more general clinical usage. It is very much a hands-on text, and, we hope, a constant companion. The aim of the book is to guide clinical practice and rational therapy and to be a source of reference. It has been designed for doctors in adult and paediatric medicine, both generalists and also specialists in the fields of neurology, neurosurgery, psychiatry, paediatrics, alienist medicine and in learning difficulty. It will also appeal to practitioners of the paramedical specialties who are involved in the management of epilepsy.

One remarkable fact about modern epileptology is its internationalism. In countries all around the world, the same issues about the treatment of epilepsy arise, the same therapeutic questions are debated, and there is a large and surprising measure of agreement on specific points. The international nature of epilepsy is in no small part due to the endeavours of the International League Against Epilepsy (ILAE) which has chapters now in 48 countries and nearly 10 000 members, and whose meetings are a forum for the dissemination of information about epilepsy and its treatment. The influence of the league has left no area of epilepsy untouched. We are therefore greatly honoured, in this book, to Dr E.H. Reynolds, the current president of the ILAE, for contributing a foreword.
A distinguished and accomplished physician, Dr Reynolds is also a mentor and a friend, and a person whose influence on modern British and international epileptology has been benevolent and all-embracing. Our contributors are from four continents and provide a truly international perspective. Almost all are active in the ILAE, and the text reflects to a great extent the current interest and research of ILAE members. Matching this internationalism, nearly half of the chapters are by contributors (from various countries and continents) whose training was partly at the National Hospital for Neurology and Neurosurgery at Queen Square in London. Our preliminary historical chapter looks at the history of epilepsy therapy (from 1857 to 1939) using the National Hospital as an historical mirror, and as epilepsy is still an important area of contemporary neurology at Queen Square, subsequent chapters also reflect current practice at the National Hospital. This is another thread which runs through the book and gives to the volume, at least in part, a specific favour which I hope provides the text with an interesting perspective.

A book of 63 chapters will always pose a challenge for its editors and its publisher. In this volume, we have heavily edited some individual contributions, and worked assiduously in conjunction with the authors to avoid repetition or overlap. Where overlap has been permitted between chapters, this is because individual authors have taken differing (and occasionally conflicting) approaches which are, in the editors’ view, sufficiently instructive to allow inclusion. We have also added editorial tables in places to ease comprehension and in particular to make the information contained in the text easy to follow and readily accessible to the reader, often a busy clinician. Also, we have tried to provide a uniform style, and a high quality of writing. To assemble chapters on such a disparate subject from authorities around the world, to edit and to produce a pleasing and useful book has been a major task. In this, the editors have been expertly helped by Dr Stuart Taylor from Blackwell Science, the publishers, whose skill and expertise were the essential ingredients of the successful completion of our work. We are enormously grateful to Dr Taylor, not least for his humour and forbearance in executing (a seemingly, at times, well-chosen word) the task, also to Lorna Dickson, our production editor who has worked absolutely tirelessly on this project, and other members of the design and production team at Blackwells; they have all been pre-eminent in their work. Finally, we would like to thank the chapter authors for their outstanding contributions, their patients for providing the experience on which our current therapeutics is based, and epileptologists around the world, ILAE members and others, who have stimulated our thoughts and actions in the field of epilepsy treatment.

Every effort has been made in the preparation and editing of this book to ensure that the details given (for instance of drug dosages and pharmacokinetic values) are correct, but it is possible that errors have been overlooked. The reader is advised to refer to published information from the pharmaceutical companies and other reference works to check accuracy.

Simon Shorvon, for the editors
London, 1996
In the historical introductions to the three previous editions of this book, therapeutic developments in three periods were covered, each from a different historical viewpoint: 1857–1939, 1938–1955, 1955–1989 [1,2,3]. In this, the fourth edition, I decided not to produce a further update (from 1989), judging this to be too close to garner an appropriate perspective. In its place, I have attempted to provide a timeline of antiepileptic drug therapy, listing pharmaceutical developments in mainstream clinical practice for the treatment of epilepsy since 1857. A second timeline is also provided, in which surgical and other non-drug epilepsy therapies are listed, with events of importance for epileptology. Both are accompanied by a commentary and in a brief contextual narrative. Finally, in the appendix, providing an update (from 1989), judging this to be too close to garner an equally transient state of knowledge.

Secondly, the pace of new drug introductions varied considerably over time. There has been a clear ‘concertina effect’ with bursts of activity followed by fallow periods. These periods of activity have often been due, after the discovery of a new class of drug, to the development of close structural derivatives (‘me-too’ drugs; this happened for bromides, barbiturates, hydantoins, oxazoldine diones, iminidibenzyls, pyrrolidones). Sometimes the derivatives have fared better than the parent drug, as has been the case with ethosuximide and levetiracetam, for instance, but sometimes the reverse has been the case (e.g. with phenytoin and phenobarbital).

Thirdly, the introduction of the most effective drugs has depended on new technology, new models or new scientific paradigms, albeit often laced with a large element of serendipity. The introduction of phenytoin thus depended on the new maximal electroshock model, the introduction of pregabalin, gabapentin, vigabatrin, tiagabine on the ‘GABA’ wave of experimental work, of perampanel on the glutamate wave, and of lamotrigine on the now abandoned ‘folate’ theory and so on. The underpinning of drug discovery by physiology and biochemistry shows how science leads and commercialism follows, but the influence of chance and of providence can never be underestimated. Epilepsy therapeutics has never been entirely rationally based.

Fourthly, the theoretical underpinning of drug introductions was often also based on concepts of aetiology of epilepsy. Thus, at the beginning of this period, therapy was devised on theories of nutritional balance, vascular congestion, autoxidation, masturbation and hereditary degeneration, and therapies based on restoring balance, reducing congestion, cleansing the bowel, castration and eugenics rose in and out of fashion. In recent times, the concept that epilepsy is caused by a loss of the normal balance between excitatory and inhibitory pathways has all but disappeared. The influence of chance and of providence can never be underestimated. Epilepsy therapeutics has never been entirely rationally based.

Over these 150 or so years, a few general themes have emerged which are worth enumeration. First, it is clear that most of the drugs introduced over this period have not stood the test of time, despite exaggerated claims made at the time. There have been various reasons for this, but usually their failure to make long-term impact has been because of an erroneous theoretical basis, an only modest impact on seizure control — if any impact at all — or the development of sometimes serious side-effects, some of which took years to be recognized. It is not so much that the many adulatory claims made for medicaments, now discarded, were deliberate deception, but more that they reflected the theoretical mores and fashions of the day. However, they do induce a sense of déjà vu — and should encourage a degree of skepticism when presented with assertions about contemporary therapies which are themselves based on an equally transient state of knowledge.

Finally, the social, commercial and political contexts have an enormous influence. This influence is realized through such processes as regulation and commercial practice. The rapid development of drugs in the 1940s in the USA and in the 1950s–1960s in Europe were a result of light-touch regulation, and the dearth of
drugs in the 1960s–1970s in the USA was due in part to a regulatory reaction to the thalidomide tragedy. The current lack of new compounds is partly due also to the increasing bureaucracy and regulation of recent years. Another notable development has been the transfer of drug discovery from the hospital or university setting, typical in the first half of the period, to the situation now where drugs emerge mainly from the hidden interstices of the pharmaceutical industry in a heavily commercialized context. The rise in power and profitability of the pharmaceutical industry is one of the striking features of the post-war therapeutic scene and of epilepsy treatment. Epilepsy has interested the pharmaceutical industry also as the most successful drugs have been found to have uses in other indications (e.g. pain, depression) as well as in epilepsy, and these indications are often larger and more profitable than epilepsy itself.

Commentary

1857–1911

At the start of our period, 150 years ago, there were, by general agreement, few if any ‘specifics’ for the treatment of epilepsy. This was the point made by Dr Edward Henry Sieveking, soon to become physician at the National Hospital for the Paralysed and Epileptic in London, the first hospital providing outpatient treatment of epilepsy, and later physician to Queen Victoria, at a celebrated meeting of the London Royal Medical and Chirurgical Society on 11 May 1857 [4]. In his paper, he dismissed specific remedies and recommended a more rounded approach with the use of counter-irritants, the promotion of healthy action of the secretory organs (secreting organs), and the toning up of the constitution by vegetable and metallic roborants (tonics). Delasiauve, in his book Traité de l’épilepsie of 1854, made the same point, dividing therapy into:

1. Debilitating therapies, such as bleeding, tepid baths;
2. Evacuant therapies, including emetics and purgatives;
3. Sedative therapies, including ether;
4. Specifics, including valarian and opiates; the latter being not very successful.

This was indeed the orthodoxy of the day. The 1857 meeting was celebrated though, not for Sieveking’s paper — excellent though it was — but for the remarks in the discussion that followed. In this, the royal obstetrician Sir Charles Locoock, chairman of the meeting, reported his use of potassium bromide in hysterical catamenial epilepsy. Thus, on this rainy evening in London, the first modern medical treatment for epilepsy, and the first really effective ‘specific’ (or at least near-specific), was launched. There were further reports by Wilks, Radcliffe, Ramskill and Hughlings Jackson over the next few years, and by 1864 bromides had begun to be very widely used. In passing, it is interesting to note that at the meeting Locock also recommended removing over-crowded teeth and the cessation of masturbation. In the same vein, Webster remarked after Sieveking’s paper that onanism was a frequent cause of epilepsy especially in southern climates, but Sieveking said he had not referred to the practice as ‘it was difficult to arrive at the truth in regard to this, and that he did not know how to proceed to determine it in the case of females’.

Sieveking had also in that year published a book Epilepsy and Epileptiform Seizures: Their Causes, Pathology and Treatment [5] which was a landmark in epilepsy therapeutics. The second edition was completed in 1861 and in this Sieveking divided treatment into that of the ‘acute paroxysm’, for which he recommended the prevention of injury, counter-irritation by terebinthinate fomentations or sinapisms or leeches to the temple, removal of all restraint, avoidance of sedatives, cool air, carotid compression, cold applications, Galvanism, avoidance of ammonia and volatile stimulants and chloroform. He then considered the treatment of the premonitory stage and chronic epilepsy and recommended ligatures to the extremities, counter-irritation (e.g. setons, blisters), dry cupping and the abstraction of blood (by various means), trephining, moral treatment, purgatives, mineral tonics (‘heroic antiphlogistic treatments should be eschewed’), nitro-muriatic acid, gentian, decoction of bark and sulphuric acid, oculum morrhuae (in other words, cod liver oil!), as well as bromide, which he thought of only moderate benefit, and potassium iodide for epilepsy due to secondary syphilis and lead poisoning. Sieveking remained skeptical about the use of specifics, as he put it:

I make these remarks not only as an apology for not entering more fully into the consideration of a host of drugs that may be used in the course of the treatment of epilepsy with more or less advantage; but also as a protest against that specialism, fostered by the public as well as the profession, which converts every disease into a separate entity, breaks up the unity of the science of medicine, and, in its extremes, does more harm than any extra-professional quackery.

He listed therapies which in general he had found unhelpful: opiates and narcotics, hyoscine, conium, belladonna, hydrocyanic acid, belladonna, digitalis, mistletoe, cotyledon umbilicus and indigo. He ended his long chapter on treatment by referring readers to the complete lists of therapies in the works of Tissot, Fraser, Cooke, Coblard and others, and by his now famous remark:

In fact, there is not a substance in the material medica, there is scarcely a substance in the world, capable of passing through the gullet of man, that has not at one time or other enjoyed a reputation of being an anti-epileptic.

Hughlings Jackson also took a negative view of drug therapy, writing in 1888: ‘It is notorious that our treatment of epilepsy is deplorably unsatisfactory’ (cited in [6]), and he recommended for the first time, consideration of surgical treatment. Despite the pessimism of these leading doctors, it was nevertheless quite clear that bromide had changed the way physicians approached therapy in epilepsy. These drugs ushered in the modern age of antiepileptics, with its emphasis on efficacy, side-effects, mechanism of action and clinical therapeutics. This revolution started with bromide in its formulation as a potassium salt, but was soon followed by other formulations (notably as sodium, ammonium, strontium or lithium salt, and by combination products) but no consensus was ever reached about their relative merits. This was the start of a trend for the production of ‘me-too’ drugs which has continued to this day.

In this period, medicaments fell into three categories (Table 1): plant derivatives, animal derivatives and simple chemicals. Therapy also was often divided into therapy for the acute seizures (or impending seizures) and chronic therapy. The plant and animal extracts were produced largely in local pharmacies and dispensaries, but the chemicals were increasingly the province of the growing chemical industry, particularly in those companies involved in making dyes. These were the birth pangs of the pharmaceutical industry which was to so dominate therapy in the next century.

William Gowers was the most celebrated writer on epilepsy therapeutics in the late nineteenth century. His superb text Epilepsy and Other Chronic Convulsive Disorders [7] contained 50 pages on
Drug treatment for epilepsy

- **1857** Sir Charles Locock reported the effectiveness of bromide in hysterical catamenial epilepsy
- **1861** Samuel Wilks reported the effectiveness of bromide (combined with iodide) in ordinary epilepsy
- **1865** Chloroform and ether used for acute seizures
- **1871** Amyl nitrite and later nitroglycerin used for acute convulsions
- **1872** Cannabis recommended for the headache and restlessness after an epileptic fit
- **1873** Ergot reported to be useful in epilepsy
- **1874** Chloral used for acute seizures
- **1880** Borax introduced for epilepsy by Sir William Gowers
- **1884** Coal tar products used in epilepsy
- **1887** Paraldehyde used for epilepsy (the drug was entered into the formulary in 1874)
- **1892** Sulphonmethane (Sulphonal) used in epilepsy
- **1893** Paul Gibier recommended injection of extract of sheep cerebrum
- **1895** *Adonis vernalis* recommended for epilepsy by Bernard Sachs and Vladimir Bekhterev
- **1898** Erysipelas antiserum used to treat epilepsy by Hessler
- **1901** Ceni recommended injection of serum from other epileptic patients on the basis that this contained autocyte toxin
- **1906** First Food and Drug Act in the USA

Other treatments for epilepsy

- **1854** *Publication of Traité de l’épilepsie* by Louis Delasiauve
- **1857** *Publication of On Epilepsy and Epileptiform Seizures: Their Cases, Pathology and Treatment* by E.H. Sieveking
- **1859** *Publication of On the Origin of Species* by Charles Darwin and modern theories of inheritance of disease were born
- **1860** Foundation of the National Hospital for the Relief and Cure of Epilepsy and Paralysis in London
- **1866** Gregor Mendel published his theory of inheritance, widely recognized only in 1902 when his work was translated into English by William Bateson
- Cliterodectomy reported to be effective in epilepsy
- **1881** Ligation of carotid artery reported to be effective in epilepsy
- **1883** *Cervical sympathectomy described for use in epilepsy*
- **1886** Sir Victor Horsley carried out first cortical resective surgery for epilepsy, an operation that opened the modern era of epilepsy surgery, and published work on cerebral localization and brain mapping
- **1889** Francis Galton proposed his law of ancestral inheritance whereby offspring receive half of their inherited characteristics from each parent
- **1899** Low salt diet recommended for epilepsy and to reduce the dose of bromides
- **1904** *Publication of Epilepsy and its Treatment* by William Spratling
- **1905** William Bateson coined the term genetics
- **1906** First Food and Drug Act in the USA
- **1908** Sir Victor Horsley and Robert Clarke designed a stereotactic frame
- **1907** Indiana became the first US state to enact a eugenic compulsory sterilization law for persons with mental deficiency and included patients with epilepsy
- *Publication of Epilepsy: a Study of the Idiopathic Disease* by W. Aldren Turner
- **1909** Foundation of the International League Against Epilepsy (ILAE) in Budapest
- Launch of first series of *Epilepsia* which continued publication until 1914
- **1910** Eugenic record office opened at Cold Spring Harbor under the leadership of Charles Davenport and engaged in genetic studies of epilepsy
- **1911** First report that fasting improves epilepsy
As Gray wrote in 1895: "ff new e that, by 1890, enthusiasm for medicinal therapies was waning. No impress him was borax, which Gowers himself he also criticized many of the medicaments used in contemporary Gowers considered all other therapies as 'adjuncts' to bromide, and surgical measures:

The treatment of epilepsy is purely medicinal. It has always been so, but in a far more pronounced degree since the almost accidental discovery, more than forty years ago, of the influence on the disease exerted by the combinations of bromine.

Gowers considered all other therapies as 'adjuncts' to bromide, and he also criticized many of the medicaments used in contemporary therapy as being of little if any value. One adjunct though that did impress him was borax, which Gowers himself first introduced in his Goulstonian lecture of 1879, and this continued to have a place in therapy right up until the 1950s.

Bromide dominated therapy until the 1920s, but it was clear that, by 1890, enthusiasm for medicinal therapies was waning. No new effective therapies were launched in the next 20 years and the transient nature of improvement on therapy was also recognized. As Gray wrote in 1895:

Epileptics, are very readily influenced by slight changes in the environment and in ... treatment ... [they] do well for a time upon any change in treatment, whether that treatment be medical or surgical, whether it consists of cutting off the prepuce, removing the clitoris, extirpating the ovaries ... using the hot iron ... cutting the eye muscles ... or etherizing the patient and cutting a piece of skin out of the buttock. I have even seem improvement effected in a patient for months by mere change of locality. (cited in [7])

In 1907, the next major figure in epilepsy therapeutics, William Aldren Turner, published his classic book Epilepsy: A Study of the Idiopathic Disease [8]. This was a text that defined advanced thinking of the time. In the book, he considered that only a few drugs were of definite benefit and his lists of effective and ineffective drugs are shown in Table 3.

William Philip Spratling, the leading US epileptologist of the time, published his book Epilepsy and its Treatment in 1904 [9]. His recommendations regarding drug treatment were very similar to those of Gowers. He expounded in detail on the bromides, and their various formulations, and also recommended their combination with opium or codeine. Other drugs he thought efficacious, in line with Gowers and Turner, were borax, chloral, amylene hydrate, nitroglycerin, zinc, iron and chloroform. He also recommended chloretone (trichloro-2-methyl-2-propanol, a hypnotic similar to chloral), urethan, solanum carolinense, simulo, trional (a GABAergic sedative), serum therapy of Ceni and the coal tar derivatives (antipyrin, phenacetin and acetanilide).

The therapy of status epilepticus also evolved during these years (for sources see [10]). In 1874, Bournville, in his classic account of status epilepticus, related the case of Marie Lamb who was treated at the Salpêtrière with sinapism (a topical remedy with a base of mustard flour), laevoment purgative and quinine sulphate – to no effect. Amyl nitrite was introduced in 1876, and Gowers in 1881 recommended morphia. Other drugs used were apomorphine, hyoscyine hydrobromate and chloroform. In 1903, Clark and Prout advocated chloroform, bromide and chloral. Turner suggested at the onset of status epilepticus that the dose of bromide salt should be doubled, and chloral hydrate, but that at the height of an episode 'nothing will arrest the seizures except the inhalation of chloroform' and that in the stage of stupor what was needed was careful nursing, abundance of light nourishment and tonics.

By the end of the nineteenth century, the side-effects of bromides were recognized (‘bromism’), and much of the therapeutic efforts were focused on reducing these. This included the use of low salt diets to reduce the requirement for bromide (so that the body would replace chloride with bromide; dechloridization), the use of combination therapies and the use of lower doses. With the advent of bromides many previously widely used compounds fell from favour (including most herbal and many chemical remedies such as zinc and iron) and the range of therapies greatly narrowed.

1912–1988

In 1912, the hegemony of bromides was challenged for the first time by a totally new medicament. This newcomer, a new chemical compound manufactured in the laboratories of Bayer, the German pharmaceutical company, was phenobarbitone (Luminal). It was synthesized in 1904, and joined a group of barbiturates then being used as sedatives and hypnotics. Its antiepileptic properties were discovered in 1912 by chance by Alfred Hauptmann, a young psychiatrist in Freiburg, who wrote a long and detailed account of its actions. The importance of this discovery was not initially widely recognized, partly because of its publication in an obscure German language journal and also the greater medical priorities of the 1914–1918 war. However, by 1920 its use was being reported in England and a year later in the USA, and very rapidly after this it entered general prescribing.

Until about 1940, bromide and phenobarbital remained the first-line drugs for epilepsy, with some authorities favouring each. It is curious to see how opinion was divided about their relative merits, but what it does seem clear that when bromide therapy was used skillfully, it matched the outcomes of phenobarbitone in the eyes of many of the leading neurological figures. Kinnier Wilson [11], for instance, could still write in the late 1930s in his standard neurological textbook that: ‘although phenobarbital was at first thought likely to supplant bromides as a remedy of choice, it was ‘not its equal in general applicability’, and bromide ‘remains the drug of first choice – the sheet-anchor on which everyone relies’. Wilson listed other drugs that he found helpful (Table 4) but wrote that ‘no useful purpose would be served by further comment on the list of drugs vaunted at one time or another: all must stand the test of experience, and ... those which have successfully done so can be numbered on the fingers of one hand’.

In the 1950s, the absorption, distribution, metabolism and excretion of phenobarbital was first clearly identified when serum phenobarbital levels were possible to measure in clinical practice (in 1952). This improved its therapeutic effectiveness and phenobarbital remains today one of the most prescribed medications for epilepsy globally, with a high uptake especially in the developing world because of its remarkable cheapness. Furthermore, its efficacy has never been shown to be significantly worse than any other drug, and its fall in popularity in contemporary Western medicine is largely because of its side-effect profile, and its lack of marketing backing by any of the major players in the pharmaceutical industry who see little profit in the promotion of such an inexpensive drug.

Intravenous phenobarbital was introduced in 1926 for status epilepticus, and was sometimes mixed with chloroform, enemata and bromides. Other drugs recommended for status epilepticus at the time [10] included scopalamine and atropine, amylene hydrate (‘Alt’) and paraldehyde (first used in 1914). Non-pharmacological therapies included irrigation of the bowel. Kinnier Wilson [11]
Drug treatment for epilepsy

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912</td>
<td>Discovery of the anticonvulsant effects of phenobarbitone by Alfred Hauptmann</td>
</tr>
<tr>
<td>1913</td>
<td>Publication of a large series of epileptic patients treated with crotalin – rattlesnake venom – by Ralph Spangler</td>
</tr>
<tr>
<td>1914</td>
<td>Paraldehyde first used for status epilepticus</td>
</tr>
<tr>
<td>1915</td>
<td>William Shanahan stated that irrigation of the bowel was the most urgently indicated procedure to treat status epilepticus</td>
</tr>
<tr>
<td>1920</td>
<td>Positive effect of the ketogenic diet on epilepsy was first documented critically</td>
</tr>
<tr>
<td>1922</td>
<td>Introduction of allobarbital with allylparacetaminophenol (Dialacetin; Ciba) for epilepsy (approx. date)</td>
</tr>
<tr>
<td>1926</td>
<td>Intravenous phenobarbitone reported to be used in status epilepticus</td>
</tr>
</tbody>
</table>

Other treatments for epilepsy

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912</td>
<td>Fedor Krause reported 96 operated patients with focal epilepsy and brain mapping by electrical stimulation</td>
</tr>
<tr>
<td>1914</td>
<td>ILAE went into hibernation with the outbreak of the First World War</td>
</tr>
<tr>
<td>1915</td>
<td>William Shanahan stated that irrigation of the bowel was the most urgently indicated procedure to treat status epilepticus</td>
</tr>
<tr>
<td>1916</td>
<td>Bacillus epilepticus isolated from stools of epileptic patients and identified as the cause of epilepsy and the theoretical justification of colectomy</td>
</tr>
<tr>
<td>1917</td>
<td>Publication of an influential series of cases of right-sided colectomy for the control of epilepsy from Boston</td>
</tr>
<tr>
<td>1918</td>
<td>Air ventriculography devised by Walter Dandy</td>
</tr>
<tr>
<td>1919</td>
<td>Air encephalography first carried out via the lumbar route by Dandy</td>
</tr>
<tr>
<td>1921</td>
<td>Ketogenic diet proposed as a possible treatment for epilepsy</td>
</tr>
<tr>
<td>1922</td>
<td>Resection of adrenal gland used as treatment for epilepsy</td>
</tr>
<tr>
<td>1923</td>
<td>Dandy carried out the first hemispherectomy in a human patient</td>
</tr>
<tr>
<td>1924</td>
<td>Hans Berger recorded the first human EEG</td>
</tr>
<tr>
<td>1926</td>
<td>Cerebral angiography first attempted by Egas Moniz</td>
</tr>
<tr>
<td>1927</td>
<td>Buck v. Bell case in US Supreme Court ruled in favour of forced sterilization of epileptic patients</td>
</tr>
<tr>
<td>1929</td>
<td>Penfield’s first ‘temporal lobectomy’ (a cortical resection)</td>
</tr>
<tr>
<td>1930</td>
<td>Foester and Penfield’s paper on the surgical treatment of post-traumatic epilepsy published in Brain</td>
</tr>
<tr>
<td>1931</td>
<td>Dandy carried out the first corpus callosal section to remove a congenital cyst</td>
</tr>
<tr>
<td>1934</td>
<td>Adrian and Matthews published their renowned paper in Brain corroborating Berger’s EEG findings</td>
</tr>
<tr>
<td>1935</td>
<td>J.D. Bernal and Dorothy Hodgkin developed X-ray crystallography</td>
</tr>
<tr>
<td>1936</td>
<td>First clinical EEG laboratory was set up at Massachusetts General Hospital</td>
</tr>
</tbody>
</table>

Moniz published the first human frontal lobotomy
realized that status was often caused by too rapid drug withdrawal and in these cases large doses of bromide and chloral per rectum every 4–6 hours should be used. Other methods of treatment included the hypodermic injection of Luminal sodium, bromide (including intrathecal bromide), repeated drainage of the spinal fluid by lumbar puncture, hyoscine hydrobromide, paradehyde and, he also commented, ‘venesection and saline injections may also be used in the robust’.

In 1910–1939, many of the other traditional herbal, animal and simple chemical remedies still continued to be widely used, although one senses from the literature that these were applied with little hope of success. A small number of other novel therapeutic options were also launched in this period. Perhaps the most important of these was the ketogenic diet, and although not strictly speaking a ‘drug’ it is included here as it was thought to exert its effects through biochemical changes similar to those induced by drugs. The diet was first mooted in 1921, based on the observations that starvation, and also the ‘water diet’, improved epilepsy (first made in 1911). After a few years of experimentation with different fat : carbohydrate and protein ratios, the standard diet was in widespread use in the 1930s with many reports of its value. Another introduction was that of borotartrate, first mentioned by Marie in 1926. This was notable for the fact that it was antiepileptic without being sedative (a property not shared with bromide or phenobarbital) but its effectiveness seems to have been modest at best.

A snapshot of the most popular drug treatments in the period was given by the Dutch neurologist Muskens in his book of 1926 [12]. He divided therapy according to the stage of the disease. He emphasized prophylaxis in the prodromal stage, where therapy should be aimed at preventing the development of epilepsy by elaborating social hygiene methods and good nutrition but without medication. In early epilepsy he used bromide, phenobarbital and borax as the three main therapies, and also zinc oxide, nitroglycerine and cannabis indica; in invertebrate cases, he prescribed iodide of mercury, according to a method ‘very similar to the mercurial treatment used for lues’.

Although this survey is primarily concerned with drug therapy, a brief word on non-drug approaches to the treatment of epilepsy needs to be added, as from the mid-nineteenth century right up until the 1950s there was also a strong emphasis on what was initially included broadly under the designation of hygiene and advice on other broad aspects. These included the importance of regular habits, enough sleep, sufficient exercise, massage, attention to bowel habits, the avoidance of masturbation, the avoidance of stress and the use of tonics. Hydrotherapy and detoxication were frequently proposed. Turner wrote in 1910: ‘We have, therefore, in every case of epilepsy to treat the individual and not solely the disease’ [13]. Turner recognized six headings under which the treatment of epilepsy should be considered: prophylaxis, management and treatment of young epileptics, hygiene, education of epileptic children, care of confirmed epileptics (epileptic colonies) and surgical treatment. There was great attention paid to diet, with emphasis on balance, often with low protein and or low salt diets promoted, and the omission of a seemingly random selection of foods and drinks by different authorities. Lengthy dissertations on these various measures were to be found in the texts of the period. Physical therapies included counter-irritation with cautery, blistering or setons, for example. This was popular too in the nineteenth century although seems to have faded from fashion in the early twentieth century, as did galvanism, magnetism and other electrical therapies. Another interesting trend in the late nineteenth and early twentieth centuries was a vogue for institutionalization and the establishment of epilepsy colonies for promoting good health. Indeed, the promotion of research into institutional care was one of the main reasons proposed for the establishment of the International League Against Epilepsy (ILAE) in 1909 [14]. Surgical therapy was also made possible by the introduction of Listerian antisepsis, general anaesthesia with ether (1846) and especially chloroform (1847) and local anaesthesia (initially with cocaine, 1877). Horsley introduced resective cortical surgery on the basis of meticulous brain mapping in primates, and his pioneering work, with Jackson and Ferrier, on cerebral localization. His first epilepsy operations were carried out in 1886 to international acclaim. Other operations also performed around this time, almost certainly totally ineffectively, included ligation of the carotid artery (1881), cervical sympathectomy (1883), circumcision, clitoridectomy (1866), oophorectomy, testectomy, adrenalectomy and bilateral vertebral artery occlusion. Oophorectomy, orchidectomy and castration were used as eugenic methods, especially in the early twentieth century. Interest waned in cortical resection in the first four decades of the twentieth century, which was proving less successful than initially hoped, and the number of surgeries performed worldwide fell considerably. At the same time there developed a widespread vogue for colectomy and other bowel resections, on the basis that these would reduce auto-intoxication (for a consideration of the historical influences of aetiology on therapy see [15]).

In the early 1930s, especially in the USA, there was a new interest in trying novel compounds for epilepsy. These included the use of vital dyes – notably brilliant vital red and methyl blue – and for a time there was a vogue for these treatments. Vasodilator therapy was also being tried with a variety of substances, including acetylcholine, amyl nitrite, carbaminoylcholine (one of the most powerful parasympathomimetic drugs known), and the ‘fourth substance of the arteriolenstaff’, reflecting the then current interest in alterations in cerebral blood flow as a pathogenic mechanism of epilepsy. Other new medicinal therapies included thyroid extract, pancreatic extract, vitamin B, strychnine, boric acid, pyridine, ammonium chloride, ethyl phenyl sulphone and glutamic acid. Benzodrine and caffeine were widely used to counteract the sedative effects of the barbiturate, bromide and hydantoin drugs. Other physical treatments were explored including insufflation of the cerebrospinal fluid space with air, X-irradiation, metrazol-induced or electrically induced convulsions. Paradehyde too, introduced into clinical practice in 1882, was first recognized to be have useful anticonvulsant action in 1940.

The big news of the period though of course was the discovery of phenytoin, by Merritt and Putnam, who were given the chemical by the US pharmaceutical company, Parke Davis, and who for the first time used an animal model for systematically screening chemicals for their antiepileptic action. The use of experimental models was not new, and camphor- and metrazol-induced models had been in use for many years, but the systematic use of screening, using an electrical convulsant model, was a novel step. The clinical development of phenytoin was impressively fast. It was first tried experimentally in the cat in 1936, eight patients had been treated by August 1937, the first clinical trial was reported in June 1938 and by September 1938 the results in 200 patients were published. In 1939, the drug was added to the ‘New and Nonofficial Remedies list of the American Medical Association’, on the basis of 13 different trials in 595 patients for ‘epileptic patients who are not benefitted by Phenobarbital or bromides and in those in whom these drugs induced disagreeable side reactions’. By 1940, it was in widespread use as a first choice medication and remained so in epilepsy treatment worldwide at least until the late 1980s, when it was slowly
Historical Introduction

1937 Second series of Epilepsia was launched and continued publication until 1950

J.B.S. Haldane and Julia Bell published the first evidence of genetic linkage in humans

1938 McKenzie carried out the first human hemispherectomy

1939 Action T4 – the mass murder of handicapped persons with epilepsy began in Nazi Germany

Hodgkin and Huxley published their first paper on the membrane theory of nerve transmission

1940 First corpus callosectomy for epilepsy was reported by William van Wagenen and Yorke Herren

Publication of three-volume textbook Neurology by S.A. Kinnier Wilson

1941 Principle that one gene codes for one enzyme established by George Beadle and Edward Tatum

1942 ECT used in the treatment of epilepsy

1947 George Dawson recorded cerebral evoked potentials for the first time

Stereotactic methods introduced into neurosurgery by Spiegel et al.

1948 Around this time, the first temporal lobectomy with removal of the mesial structures was performed, by either Arthur Morris in Georgetown or Wilder Penfield in Montreal

Gibbs et al. described the anterior temporal EEG spike

1949 First video and EEG monitoring introduced

GABA identified in the brain by Roberts and Fraenkel

Video-tape and EEG recorded simultaneously

1950 Second series of Epilepsia ceased publication

Intravenous paraldehyde first used in status epilepticus

1951 First use of corticosteroids and ACTH in epilepsy

Phenylbutyrate (Thiabendazole; Lilly) introduced into clinical practice

1952 Metharbital (Gemonil; Abbott) introduced into clinical practice

Benzchlorpropamide (Hibicon; Lederle) introduced into clinical practice and then withdrawn

1953 Phensuximide (Milontin; Parke, Davis) introduced into clinical practice

1954 Primidone (Mysoline; ICI) introduced into clinical practice

1956 Intravenous phentoin first used in status epilepticus

1957 Ethotoin (Peganone; Abbott) introduced into clinical practice

Methsuximide (Celontin; Parke, Davis) introduced into clinical practice

1958 Ethosuximide (Zarontin; Parke, Davis) introduced into clinical practice

1960 Intravenous lignocaine reported to be effective in status epilepticus

Drug treatment for epilepsy

1937 First report of the anticonvulsant effects of the vital dyes (Brilliant Red) in epilepsy

1938 Amendment to the Food and Drugs Act in the USA

First use of phentoin in epilepsy (Dilantoin, Epanutin; Parke, Davis)

1941 Acetazolamide (Diamox; Lederle) introduced for the treatment of epilepsy

1946 Trimethadione (Tridione; Abbott) introduced into clinical practice

1947 Mephenytoin (Mesantoin; Sandoz) introduced into clinical practice

First randomized controlled trial carried out – the Medical Research Council study of streptomycin in tuberculosis

1949 Paramethadione (Paradione; Abbott) introduced into clinical practice

Intravenous paraldehyde first used in status epilepticus

1950 First use of corticosteroids and ACTH in epilepsy

Phenthyle (Thiantoin; Lilly) introduced into clinical practice

1951 Phensuximide (Phenurone; Abbott) introduced into clinical practice

1952 Metharbital (Gemonil; Abbott) introduced into clinical practice

Benzchlorpropamide (Hibicon; Lederle) introduced into clinical practice and then withdrawn

1953 Phensuximide (Milontin; Parke, Davis) introduced into clinical practice

1954 Primidone (Mysoline; ICI) introduced into clinical practice

1956 Intravenous phentoin first used in status epilepticus

1957 Ethotoin (Peganone; Abbott) introduced into clinical practice

Methsuximide (Celontin; Parke, Davis) introduced into clinical practice

1958 Ethosuximide (Zarontin; Parke, Davis) introduced into clinical practice

1960 Intravenous lignocaine reported to be effective in status epilepticus

Other treatments for epilepsy

1937 Second series of Epilepsia was launched and continued publication until 1950

J.B.S. Haldane and Julia Bell published the first evidence of genetic linkage in humans

1938 McKenzie carried out the first human hemispherectomy

1939 Action T4 – the mass murder of handicapped persons with epilepsy began in Nazi Germany

Hodgkin and Huxley published their first paper on the membrane theory of nerve transmission

1940 First corpus callosectomy for epilepsy was reported by William van Wagenen and Yorke Herren

Publication of three-volume textbook Neurology by S.A. Kinnier Wilson

1941 Principle that one gene codes for one enzyme established by George Beadle and Edward Tatum

1942 ECT used in the treatment of epilepsy

1947 George Dawson recorded cerebral evoked potentials for the first time

Stereotactic methods introduced into neurosurgery by Spiegel et al.

1948 Around this time, the first temporal lobectomy with removal of the mesial structures was performed, by either Arthur Morris in Georgetown or Wilder Penfield in Montreal

Gibbs et al. described the anterior temporal EEG spike

1949 First video and EEG monitoring introduced

GABA identified in the brain by Roberts and Fraenkel

Video-tape and EEG recorded simultaneously

1950 Second series of Epilepsia ceased publication

1951 Stereotactic radiosurgery introduced by L. Leksell

1952 Volume 2 of the Atlas of Electroencephalography, devoted to epilepsy, was published

Third series of Epilepsia inaugurated but ceased publication in 1956

Measurement of phenobarbital serum levels first achieved

1953 James Watson and Francis Crick identified the helical structure of DNA

1954 Primidone (Mysoline; ICI) introduced into clinical practice

1956 Intravenous phentoin first used in status epilepticus

1957 Ethotoin (Peganone; Abbott) introduced into clinical practice

Methsuximide (Celontin; Parke, Davis) introduced into clinical practice

1958 Ethosuximide (Zarontin; Parke, Davis) introduced into clinical practice

1960 Intravenous lignocaine reported to be effective in status epilepticus

1951 Stereotactic radiosurgery introduced by L. Leksell

1952 Volume 2 of the Atlas of Electroencephalography, devoted to epilepsy, was published

Third series of Epilepsia inaugurated but ceased publication in 1956

Measurement of phenobarbital serum levels first achieved

1953 James Watson and Francis Crick identified the helical structure of DNA

1954 Primidone (Mysoline; ICI) introduced into clinical practice

1956 Intravenous phentoin first used in status epilepticus

1957 Ethotoin (Peganone; Abbott) introduced into clinical practice

Methsuximide (Celontin; Parke, Davis) introduced into clinical practice

1958 Ethosuximide (Zarontin; Parke, Davis) introduced into clinical practice

1960 Intravenous lignocaine reported to be effective in status epilepticus
Historical Introduction

was said to be divisible into three epochs: the first of bromide, the second of phenobarbital and ‘the third era is very recent in origin and is characterized by the introduction in 1938 of Dilantin Sodium’. Within a few years it had displaced bromide from the front line of therapy, and although phenobarbital continued to be widely used, bromide became a peripheral therapy, although a flurry of new papers on aspects of bromide; were published in the 1980s.

In the two decades that followed the discovery of phenytoin, new chemical derivatives began to be explored for their antiepileptic action on a massive scale by the burgeoning pharmaceutical industry. Putnam and Merritt screened a further 700 compounds, provided to them by Parke Davis and other companies, and listed the results on 618 of these chemicals in a paper in 1945. Seventy-six compounds were given a 4+ rating. They could be grouped into seven categories on the basis of their structure: barbiturates, benzoxazoles, hydantoins, ketones and phenyl ketones, oxazolidine diones, phenyl compounds with sulphur and phenyl glycol. Of these drugs, phenytoin and four others were selected for clinical trial. None of the other four (5-phenyl-5-isopropoxymethylhydantoin, ethyl-phe- nylsulphone, 5-methyl-5-phenylhydantoin, 5,5-diphenylenehydantoin) showed clinical benefits greater than phenytoin and so were not pursued after the initial trials. However, a further 13 new antiepileptic drugs were introduced into practice in 1940–1958, by six pharmaceutical companies, five of which were American and the sixth, ICI, from England. The drugs were produced mainly by manipulating the structure of the barbiturates and hydantoins using the newly refined principles of medicinal chemistry linked to methods of large-scale industrial production. Clinical testing was perfunctory and the drugs were introduced with minimal safety testing as a result many were subsequently withdrawn because of severe side-effects.

An international list of antiepileptic drugs was published in 1955 by the ILAE (a total of 23 licensed drugs) and this demonstrates the extent of structural manipulation (Table 5) comprising four barbiturates, four oxazolidines diones, six hydantoins and seven other types. In addition, there were eight combination tablets which were mainly combinations of hydantoins and barbiturate. Although a large number of medicines, these were largely ‘me-too’ drugs and none were a major advance. This period, following the discovery of phenytoin, was essentially arid and little fundamental improvement was achieved.

A striking feature of the post-war period, initially in the USA and then in Europe, was the enormous rise in the power of the pharmaceutical industry and the intense commercialization of the pharmaceutical market. This was a period of great optimism; drugs developed in the 1950s and 1960s included the first oral contraceptives, corticosteroids, antihypertensives, monoamine oxidase inhibitors, new antibiotics, antipsychotics (chlorpromazine, haloperidol) and the benzodiazepines (Valium became the most prescribed drug in history).

In the 1950s, in the field of antiepileptic drugs there was no really major advance, and epilepsy drug therapy in this period can best be ascertained from William Lennox’s definitive textbook Epilepsy and Related Disorders published in 1960 [16]. Lennox listed 16 drugs (his ‘therapeutic arsenal’) licensed for epilepsy in the USA (Table 6). The first places were given to bromides, which he noted were ‘lit- tle used today’, and to phenobarbital. Lennox mentioned that 2500 barbiturate compounds had been synthesized and of these 50 compounds were marketed, of which phenobarbital was the most frequently used for epilepsy. The third drug that impressed Lennox was methylphenobarbital (mephobarbital) which he pronounced to be ‘the only barbiturate besides phenobarbital effective against epilepsy’ and the fourth was phenytoin. He rated the fifth drug, me- phytoin, as better than phenytoin in several situations, and indeed he favoured their combined use. The next drug was ethothoin which Lennox noted was one of the 1500 compounds screened by Abbott Laboratories in the previous 8 years.

The next decade, 1958–1968, was the most productive in the history of epilepsy therapeutics, and in these 10 years a crop of truly effective and novel new drugs was developed. First off was ethosuximide (α-ethyl-α-methylsuccinimide; PM 671), a drug that was very similar in structure to phenytoin and methsuximide which had been introduced by Parke Davis in the previous years; in this sense this was a drug of the old school. It was licensed in 1958 for petit mal, and remains a drug of first choice to this day. It acts by blocking the low-voltage T-type calcium channel, a mechanism that was identified only in 1984, some 16 years after licensing.

Further developments were of drugs originating almost entirely from Europe and not the USA, and which were not chemical derivatives of known antiepileptics. The first was carbamazepine, initially known as G32883, a compound developed in the Swiss pharmaceutical company Geigy in 1953. It had a tricyclic structure, and was first investigated for depression and psychosis and then licensed for trigeminal neuralgia in 1962. Its antiepileptic effects were investigated clinically in 1959 and first reported in 1963. The drug was licensed as an anticonvulsant in Britain in 1965, then in Europe and in 1974 in the USA. Its principal mechanism of action, the blockade of sodium channels, was not recognized until 1983 but by then car- bamazepine had become the most prescribed antiepileptic drug in Europe, consigning barbiturate to the therapeutic periphery, and it remains the gold standard for comparative studies of antiepileptics and the drug to beat for any new compounds.

Sodium valproate was the next antiepileptic to be introduced and a drug that, like carbamazepine, completely changed the scope of prescribing. The first report of the antiepileptic effect of sodium valproate was published in 1964. This was discovered serendipi- tously in a small laboratory in Rennes where valproate was being used as the solvent for other experimental drugs, but its potential was quickly realized. In 1967 it was approved in France for epilepsy, and then over the next few years in other European countries (and in 1976 in the USA, albeit initially only for absence seizures). Val- proate and carbamazepine have since become the most prescribed drugs worldwide. Valproate is highly effective in many types of epi- lepsy, and was recognized early to be the drug of choice in idiopath- ic generalized epilepsy, but is also a drug with significant adverse effects, in particular teratogenicity.

Another enormous development in the epilepsy pharmaceutical landscape of the 1960s was the introduction into clinical practice of the benzodiazepine drugs. The first licensed was chlordiazepoxide in 1960 and then diazepam in 1963. Over the next 15 years, over 4000 related compounds were synthesized and screened, and by 1978 23 different compounds had been licensed. Although the main focus of these drugs was on their anxiolytic and hypnotic properties, the anticonvulsant effect of chlordiazepoxide (Librium; Ro 5-0690) was first reported in 1960 and in 1962, a series of cases of epilepsy treated with chlordiazepoxide and diazepam (Valium; Ro 5-2807) were presented. In 1965, Gastaut reported the effects of clonazepam (Rivotril; Ro 05-4023) and, in 1977, the first double-blind study
Drug treatment for epilepsy

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>Sulthiame (Ospolot; Bayer) launched in Europe into clinical practice</td>
</tr>
<tr>
<td></td>
<td>Intravenous urea used in status epilepticus with excellent results</td>
</tr>
<tr>
<td>1963</td>
<td>Kefauver–Harris amendments to FDA regulations</td>
</tr>
<tr>
<td></td>
<td>Benzodiazepines — in the form of diazepam (Valium; Roche) and chlordiazepoxide (Librium; Roche) — introduced into clinical practice and diazepam also used in status epilepticus</td>
</tr>
<tr>
<td>1965</td>
<td>Carbamazepine (Tegretol; Geigy) introduced as an antiepileptic, with first licensing in the UK</td>
</tr>
<tr>
<td>1966</td>
<td>First randomized controlled trial in epilepsy published – of carbamazepine</td>
</tr>
<tr>
<td>1967</td>
<td>Valproate (Epilim; Sanofi) approved for use first in France</td>
</tr>
<tr>
<td>1968</td>
<td>Clonazepam (Rivotril; Roche) licensed for treatment of epilepsy in Europe</td>
</tr>
<tr>
<td>1971</td>
<td>Gastaut reported excellent results of intravenous clonazepam in status epilepticus</td>
</tr>
<tr>
<td>1972</td>
<td>Publication of Effectiveness and Efficiency: Random Reflections on Health Services and start of Cochrane collaboration by Archie Cochrane</td>
</tr>
<tr>
<td>1975</td>
<td>Clobazam (Frisium; Roche) licensed in Europe for the treatment of epilepsy</td>
</tr>
<tr>
<td>1978</td>
<td>Antimyoclonic effect of piracetam demonstrated</td>
</tr>
<tr>
<td></td>
<td>First published reports of the advantages of antiepileptic drug monotherapy – and the beginning of the 'monotherapy age'</td>
</tr>
<tr>
<td>1980</td>
<td>Beginning of a period of intense study of first GABAergic and then glutaminergic mechanisms (‘GABA wave’ and ‘glutamate wave’)</td>
</tr>
<tr>
<td>1985</td>
<td>Progabide licensed in France, but not elsewhere</td>
</tr>
</tbody>
</table>

Other treatments for epilepsy

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>First routine method for measuring blood levels of antiepileptic drugs introduced in clinical practice, and the beginning of therapeutic drug monitoring and intensive pharmacokinetic and interaction studies which continue to the present day</td>
</tr>
<tr>
<td></td>
<td>International Bureau Against Epilepsy (IBE) formed</td>
</tr>
<tr>
<td>1962</td>
<td>Francis Crick and Sydney Brenner discovered that the genetic code is a triplet code (the sequence hypothesis was predicted by Crick in 1957)</td>
</tr>
<tr>
<td></td>
<td>Francis Crick and Sydney Brenner proposed that RNA is the messenger, transmitting code from DNA</td>
</tr>
<tr>
<td>1964</td>
<td>Gastaut produced the first draft of the ILAE Classification of Seizure Type</td>
</tr>
<tr>
<td>1965</td>
<td>Talairach, Bancaud and coworkers published La stéréoélectroencéphalographie dans l'épilepsie</td>
</tr>
<tr>
<td>1966</td>
<td>Epilepsy section formed at NIH with J. Kiffin Penry as chief</td>
</tr>
<tr>
<td>1967</td>
<td>Computerized X-ray tomography (CT scanning) devised by Godfrey Hounsfield (later awarded a Nobel Prize)</td>
</tr>
<tr>
<td></td>
<td>Microneurosurgical techniques (and the operating microscope) introduced by Mahmut Yaşargil</td>
</tr>
<tr>
<td>1968</td>
<td>Laboratory of Prince in Stanford began to elucidate many of the electrophysiological characteristics of experimental epilepsy</td>
</tr>
<tr>
<td></td>
<td>First Gamma Knife introduced by Leksell</td>
</tr>
<tr>
<td>1969</td>
<td>ILAE Classification of Seizure Type approved</td>
</tr>
<tr>
<td>1970</td>
<td>Establishment of the ILAE Commission on Antiepileptic Drugs</td>
</tr>
<tr>
<td>1972</td>
<td>First CT scan carried out on a patient with epilepsy</td>
</tr>
<tr>
<td></td>
<td>First edition of Antiepileptic Drugs published. The fifth and last edition was published in 2002</td>
</tr>
<tr>
<td>1975</td>
<td>Ed Southern developed Southern blotting</td>
</tr>
<tr>
<td>1977</td>
<td>First MRI scan in vivo in man (of a finger) carried out in Nottingham by Peter Mansfield (later awarded a Nobel Prize)</td>
</tr>
<tr>
<td></td>
<td>A method for sequencing DNA developed by Frederick Sanger (later awarded a Nobel Prize)</td>
</tr>
<tr>
<td>1978</td>
<td>Publication of Commission for the Control of Epilepsy and Its Consequences, Plan for Nationwide Action in Epilepsy, by the US government</td>
</tr>
<tr>
<td></td>
<td>First clinical MRI brain scans carried out</td>
</tr>
<tr>
<td>1979</td>
<td>Recognition that barbiturates act by modulating GABA reception function</td>
</tr>
<tr>
<td></td>
<td>First published reports of the use of PET scanning in epilepsy</td>
</tr>
</tbody>
</table>
comparing clonazepam and ethosuximide in absence seizures was published. The mechanism of action — agonist action at the GABA receptor — was discovered. Clobazam was then licensed in Europe in 1975, but not until 2012 in the USA.

Amongst the more minor discoveries of the period was sulthiame, first launched in Europe in the early 1960s, but never licensed in the USA. Soon after its launch, its major interaction with phenytoin was recognized and it was postulated that its effects were due simply to the increasing levels of phenytoin when used in combination. Because of this, in 1986 sulthiame was withdrawn from the market in the UK and then in other European countries. The ownership was transferred to Desitin in 1993 and it is available now in a few European countries. Probabide was licensed in France in 1985 and by 1992 used in over 2500 persons, where it remains to this day on the Gallic fringe of therapy. It was never licensed in any other European country nor in the USA.

Corticosteroids and particularly adrenocorticotropic hormone (ACTH) were introduced into clinical epilepsy practice in 1950. In 1956 the dramatic effect of these drugs in infantile spasms was first reported and there have remained first-line therapy for this indication. ACTH and cortisone were shown in the 1950s also to have value in occasional cases of other types of childhood epilepsy and in status epilepticus. The first report of the use of chlorothiazide in status epilepticus was in 1963 and it became a standard second-line therapy in the treatment of epilepsy in 1970s and of acute seizures and status epilepticus.

The treatment of status epilepticus (Table 7) [10] was also greatly influenced by the introduction of intravenous phenytoin, first used in 1956. Intravenous paraldehyde had also become popular after the first report of its use in 1949, and was favoured by many above phenytoin. Intravenous lignocaine was first reported in 1960 and intravenous urea was reported in 1962 to be highly effective in severe status epilepticus. All these drugs were eclipsed by the benzodiazepines. In 1965, Gastaut said of diazepam in status epilepticus, that it was:

Outstanding for the reliability and rapidity of action, which together make it a more effective drug than others we have used in the past, amongst which have been: injectable Phenobarbital, Somniﬁne, Chloral hydrate, Eunoctal, Sodium Bromide, Rectanol, Novocain and Hemineurin … We have never obtained such results in the past, although we have used a variety of drugs, including: Tridione, Pentothal, Eunoctal, Hemineurin, ACTH and aldosterone.

Then, in 1971, Gastaut reported the use of clonazepam (Rivotril; Ro 5–4023):

‘a new benzodiazepine – more active than diazepam … we do not hesitate to assert that Ro 05–4023 is by far the most effective agent which we have at present for the treatment of status epilepticus of whatever form or aetiology’.

The application of pharmacokinetic principles to epilepsy therapy was a most important clinical advance in the 1960s and 1970s. The measurement of antiepileptic drug serum levels began to be studied systematically only in the late 1950s, although the technologies had been available for some years before. This early development was both methodology-driven and also stimulated by the regulatory requirement for pharmacological information. Extensive studies of bromide, ethosuximide, phenytoin and phenobarbital were conducted initially, and within a decade or so the clinical pharmacokinetic properties of all the antiepileptic drugs — their absorption, distribution, metabolism and excretion — were quite fully documented. In the 1960s, too, the measurement of serum levels of drugs entered clinical practice (known as therapeutic drug monitoring), and soon laboratories were routinely measuring levels. By the early 1980s, the characterization of the hepatic enzyme systems was largely complete, and the relevant factors, both environmental and genetic, were intensively studied. A veritable industry arose, related to drug interactions, led by the study of phenytoin (a drug with uniquely complex interactions), in the mid-1960s.

The emphasis on single-drug therapy (monotherapy) was an influential change in treatment strategy dated from the late 1970s. Monotherapy became feasible, paradoxically, because of the introduction of a wider choice of new effective drugs, especially carbamazepine and valproate, and also because of the adoption of the therapeutic drug monitoring which refined and improved individual dosing. There rapidly followed a marked swing to monotherapy protocols in patients with epilepsy, and the nearly universal recommendation that antiepileptic monotherapy be initiated in new patients. By the late 1980s, the regulatory authorities had begun to request monotherapy trials.

1989–2014

The impact of molecular medicine began to be felt in this period, initially particularly in relation to studies of inhibitory GABAergic brain function (the ‘GABA wave’) and then excitatory brain function (the ‘glutamate wave’). Between 1989 and 1994, five major antiepileptic drugs were licensed in Europe and introduced into clinical practice. Vigabatrin, a product of the ‘GABA wave’ was the first. It was a designer drug, produced to be a ‘suicidal inhibitor’ of GABA transaminase. The first trials were in 1983 and it was launched first, in the UK, in 1989 and then in Europe but not in the USA. In 1997, severe visual side-effects were first reported and the drug, once widely prescribed, is now used in a very small number of patients. Lamotrigine was developed, in the UK, as an antifolate drug and found to have antiepileptic effects by chance. It was licensed in Britain in 1991 and then in Europe, and in 1994 in the USA, and is now a first-line medication. Felbamate, a drug developed by Carter Wallace Laboratories, was launched in the USA in 1993. It was not licensed in Europe and in 1994 was withdrawn because of the risk of hepatic failure. It has since been reintroduced to be used as a last-resort therapy with special precautions, and has a very small place in contemporary prescribing. Gabapentin was developed as a GABA analogue to act at the GABA receptor as a GABA agonist. In fact, it has no action at the GABA receptor and its mechanism of action is due to binding to the α2δ subunit of the neuronal voltage-dependent calcium channel (a fact discovered a decade or more after licensing).

It was licensed in 1994 in the USA and UK and by 2003 was one of the 50 most-prescribed drugs in the USA (its sales of nearly $2.7 billion in 2003) due largely to non-epilepsy indications. It is still used as a second-line drug in epilepsy. Oxcarbazepine was licensed in Denmark in 1990 and then in most EU countries in 1999 and in the USA in 2000. It is now widely used as a first or second-line therapy. Between 1995 and 2014, a further 10 antiepileptic drugs were licensed — topiramate, tiagabine, levetiracetam, zonisamide (although earlier licensed in Japan), pregabalin, stiripentol, rufinamide, lacosamide, retigabine and perampanel. Of these, topiramate and levetiracetam are widely used as first-line agents, retigabine and tiagabine have been largely abandoned, and stiripentol and rufinamide licensed only for niche indications (in Dravet and the Lennox–Gastaut syndromes, respectively). In addition, buccal midazolam has been licensed for emergency therapy, initially as midazolam hydrochloride in a preparation approved under a special licence in
Drug treatment for epilepsy

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>Licensing of a flurry of new drugs begins (third generation drugs) initially with vigabatrin in Europe and zonisamide in Japan. Vigabatrin (Sabril; Marion Merrell Dow) licensed in the UK for epilepsy. Zonisamide licensed in Japan and South Korea (Excegran; Dainippon) and then in 2000 relicensed for epilepsy in the USA and Europe in (Zonegran; Elan).</td>
</tr>
<tr>
<td>1990</td>
<td>Lamotrigine (Lamictal; Burroughs Wellcome) licensed first in Ireland and a year later in the UK. Oxcarbazepine (Trileptal; Novartis) licensed first in Denmark, then in EU generally in 1999 and in the USA in 2000.</td>
</tr>
<tr>
<td>1992</td>
<td>First biannual Eilat Conference on New Antiepileptic Drugs held.</td>
</tr>
<tr>
<td>1993</td>
<td>Felbamate (Felbatol; Carter-Wallace) licensed in the USA, but not in Europe, and then rapidly withdrawn.</td>
</tr>
<tr>
<td>1994</td>
<td>Gabapentin (Neurontin; Parke-Davis) licensed in the USA and UK.</td>
</tr>
<tr>
<td>1995</td>
<td>Topiramate (Topamax; Johnson & Johnson) licensed in the UK and subsequently in Europe and USA. Foundation of European Agency for the Evaluation of Medicinal Products (EMEA). Name changed to European Medicines Agency in 2004.</td>
</tr>
<tr>
<td>1996</td>
<td>Tiagabine (Gabitril; Novo Nordisk) licensed first in France and then widely in Europe. Cochrane epilepsy group registered in the Cochrane collaboration.</td>
</tr>
<tr>
<td>1999</td>
<td>Levetiracetam (Keppra; UCB) licensed as a treatment for epilepsy in the USA and in Europe a year later.</td>
</tr>
<tr>
<td>2004</td>
<td>Pregabalin (Lyrica; Pfizer) licensed in Europe for epilepsy. Buccal midazolam, as midazolam maleate (Epistatus; Special Products) permitted under special license in the UK.</td>
</tr>
<tr>
<td>2007</td>
<td>Stiripentol (Diacomit; Biocodex) licensed for use in severe myoclonic epilepsy of infancy in Europe. Rufinamide (Inovelon (Europe) and Banzel (USA); Eisai) licensed for use in Lennox–Gastaut syndrome in Europe.</td>
</tr>
<tr>
<td>2008</td>
<td>Lacosamide (Vimpat; UCB) licensed in Europe, and in the USA in 2009.</td>
</tr>
<tr>
<td>2010</td>
<td>Retigabine (ezogabine) (Trobalt; Glaxo Smith Kline in Europe, and Potiga; Valeant in USA) licensed in 2010 in USA and 2011 in Europe.</td>
</tr>
<tr>
<td>2011</td>
<td>Buccal midazolam in the form of midazolam hydrochloride (Buccolam; ViroPharma) licensed in Europe under PUMA scheme.</td>
</tr>
<tr>
<td>2012</td>
<td>Perampanel (Fycompa; Eisai) licensed in Europe and USA in 2012.</td>
</tr>
</tbody>
</table>

Other treatments for epilepsy

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>Revision of the ILAE Classification of Epileptic Seizures approved.</td>
</tr>
<tr>
<td>1982</td>
<td>Morrell and Whisler reported the first case treated by multiple subpial transection.</td>
</tr>
<tr>
<td>1988</td>
<td>First investigations of SPECT scanning in epilepsy.</td>
</tr>
<tr>
<td>1993</td>
<td>Clinical MRI introduced and first large published series of neurological patients, some with epilepsy.</td>
</tr>
<tr>
<td>1984</td>
<td>MRS studies of epilepsy initiated.</td>
</tr>
<tr>
<td>1995</td>
<td>Discovery of micro RNAs.</td>
</tr>
<tr>
<td>1997</td>
<td>First epilepsy gene published.</td>
</tr>
<tr>
<td>1999</td>
<td>Launch of the Global Campaign Against Epilepsy (entitled Out of the Shadows). Vagal nerve stimulation received a US regulatory approval as a treatment for partial onset epilepsy.</td>
</tr>
<tr>
<td>2000</td>
<td>First draft of the human genome published.</td>
</tr>
<tr>
<td>2002</td>
<td>HapMap project launched.</td>
</tr>
<tr>
<td>2008</td>
<td>RCT of trigeminal nerve stimulation in epilepsy initiated.</td>
</tr>
<tr>
<td>2010</td>
<td>TMS trial reported favourable results in epilepsy.</td>
</tr>
<tr>
<td>2011</td>
<td>Publication of the NeuroPace trial (responsive cortical stimulation).</td>
</tr>
<tr>
<td>2012</td>
<td>EMA approved NeuroSigma external Trigeminal Nerve Stimulation (eTNS) system in epilepsy.</td>
</tr>
<tr>
<td>2013</td>
<td>Publication of seizure prediction studies using implanted Neurovista device. NeuroPace RNS stimulator approved by FDA for treatment of epilepsy.</td>
</tr>
</tbody>
</table>
Britain, and then as midazolam maleate in a preparation approved by the European Medicines Agency (EMA) under the PUMA (paediatric use marketing authorization) scheme in September 2011, for use in patients under the age of 18 years; in fact this is the only antiepileptic drug ever to be licensed in children but not in adults.

There have been, in addition, a range of further drugs under development. The drugs discussed at the Eilat conferences on New Antiepileptic Drugs are a rough guide to those that were closest to licensing and these are listed in Table 8. Other drugs in earlier clinical trials were listed in various periods between 1992 and 2014 and in Table 9 other additional drugs in early clinical development, listed in the various editions of this book, are given. Although the number of drugs is large, as will be very evident, many do not progress to licensing even though clinical trials have been undertaken.

It is clear that the most important scientific developments in this period have not been in the discovery of these novel drugs, but in the basic science of pharmaceutical medicine. The enormous developments in molecular science in the past three decades are outside the scope of this chapter, but suffice to say that the advances in knowledge about the molecular mechanisms and regulation of brain function and epilepsy are the key to future drug development, and these hold the promise of new drugs specifically targeted at previously unknown molecular processes. This is an exciting prospect, but one not yet realized in clinical practice, or indeed in most drugs currently under clinical investigation (Table 8). In this sense, epilepsy therapeutics is lagging behind therapeutics in other areas such as immunology and oncology. A clinical area in which there has been particular disappointment in that of pharmacogenetics. The promise of individualized ‘tailored drug therapy’ has been trumpet-ed, and over-hyped, for the last 15 years, but has singularly failed to materialize. Perhaps this is not surprising given the complexity of cerebral mechanisms, the importance of brain maturation and the inherent limitations of the approach, but it nevertheless is disappointing. This topic too has to date wasted large amounts of money and time, and whether more will be delivered in the future remains to be seen. Currently, the only practical result, in the routine epilepsy clinic, has been the ability to identify patients at increased risk of a Stevens–Johnson reaction (which is a very small risk anyway), in certain populations although there are different genetic bases for different populations (this is an immunological mechanism; cerebral epilepsy mechanisms have remained untouched in any practical sense by pharmacogenetics). This finding resulted in the over-reaction of the US Food and Drug Administration (FDA), and its main consequence in practice has been to limit carbamazepine prescribing to the detriment of most patients, and to drive up costs for very little gain.

One of the striking phenomena of the post-war years, and particularly in the last 50 years, has been the rise in the size, profits and power of the pharmaceutical industry. As a result of the profitability of the pharmaceutical section, drug discovery moved in large part from a university environment to in-house company laboratories, and drug development has become a commercial enterprise kept under conditions of tight secrecy to protect commercial interests. Particularly since the mid-1980s, the value of the antiepileptic drug market has increased dramatically and the total sales of antiepileptic drugs in the USA, for instance, rose from $400 million in 1990 to $3 billion in 2000. This is in part due to increased numbers of treated persons (for reasons that are not entirely clear) and also the greatly increased cost of medication and the use of the drugs in non-epilepsy indications. Despite this, none of the newer expensive antiepileptics have proven to be strikingly more efficacious in controlled clinical trials than the older drugs, nor generally has there been a paradigm shift in side-effect profile, although most (but not all) of the newer drugs have some pharmacokinetic advantages.

The regulatory environment has grown pari passu with the power of the pharmaceutical industry. In the USA, for instance, the first major legislation was the Federal Pure Food and Drugs Act, enacted in 1906. This required accurate labelling and was in response to public concern about excessive misbranding and adulteration of food, but this had little practical effect in the field of antiepileptics. The next significant development was the 1938 Food, Drug and Cosmetic Act, framed in response to public anger over the deaths of more than 100 people caused by ‘elixir of sulfanilamide’. This required evidence of safety to be submitted to the FDA prior to marketing. Many of the raft of new drugs that were licensed following the discovery of phenytoin were then shown to be quite toxic, and it seems, at least in the field of antiepileptics, that this legal dog had little teeth. Then, in 1962, the Drugs Amendment Act, the Kefauver–Harris Amendment, was signed into law, in response to the thalidomide tragedy in Europe. This totally changed the regulatory environment. For the first time, evidence of efficacy was required as well as safety, and a retrospective programme of evaluation of drugs introduced between 1938 and 1962 was undertaken. The Act also required the disclosure of accurate information about side-effects and efficacy in drug advertising, and also placed on the FDA an obligation to establish guidelines for testing all classes of drugs, including antiepileptics. A new system of licensing was devised by which the FDA required each company to obtain an IND before it was permitted to use the drug in human subjects. Complete chemical and manufacturing information, preclinical screening and animal investigation, including toxicology, teratogenicity and safety, had to be submitted before the IND was granted. Clinical testing was divided into three phases and only after the completion of this battery of studies could a drug be licensed. These new regulations no doubt protected the public from dangerous compounds, but there were also immediate negative consequences. The cost of developing antiepileptic drugs increased greatly because of the huge increase in the number of animals and procedures needed in preclinical testing, and in the complexity and scope of this testing. Large controlled clinical trials were also required, and the immediate effect was a rapid fall-off in the number of drugs being developed.

Carbamazepine and valproate and some benzodiazepine drugs were licensed in Europe for many years before being given a US licence and patients in the USA were therefore disadvantaged. The US epilepsy community became very concerned and, in 1972, the US NINDS set up an Ad Hoc Committee on Anticonvulsant Drugs in conjunction, and with the ILAE and FDA, formulated a procedure in 1973 for design, patient selection and protocols for new drug trials which has been the framework for drug development right up until the present day.

In 1980, the FDA further tightened clinical trial methodology and made randomized controlled trials a necessary prerequisite of licensing. They also made the momentous decision that the new drugs had to demonstrate superiority over a comparator compound rather than equivalence, and so almost all the studies compared the new drug with placebo rather than a conventional therapy. This decision resulted in a lamentable lack of head-to-head randomized controlled trials, and the existing pattern of studies with small numbers of patients in a cross-over design had to be replaced by the early 1990s by the requirement to carry out parallel group studies in increasingly large numbers of patients. Over the past decades, the
laws have been interpreted with mounting stringency, and higher levels of evidence of efficacy and lack of toxicity are required now than even 20 years ago. In the past decade, a further layer of bureaucracy has been added in many countries, which assesses the cost-effectiveness of therapy. Whether, in the light of all these new regulatory hurdles, the balance between protecting the public and stimulating new therapies is appropriate is a matter of opinion but there is a strong sense that the development of AEDs is now being hampered by over-regulation.

Although this survey focuses on drug treatment, a brief note on non-pharmaceutical approaches in this period is in order. There has in the past 30 years been great interest in surgical therapy. This has been fuelled by the advent of CT and particularly MRI, which provides a method of identifying structural defects as the target of respective surgery. The increased sensitivity of MRI has demonstrated lesions such as hippocampal sclerosis, small cavernoma and developmental disorders which were previously not possible to visualize directly. Other investigatory modalities also (see Section 4) have improved surgical selection. Surgical technique has also improved in the last 50 years, with better anaesthesia and postoperative care, and surgical morbidity has fallen. The technology of surgery has improved, and in relation to epilepsy surgery the two most important developments were the introduction of the operating microscope, in 1967, which has allowed microsurgical techniques to be developed and, more recently, improved computerized stereotactic methods.

However, the theoretical basis of surgery has not changed at all. The fundamental basis of most surgery is the ‘resection of epileptic tissue in focal epilepsies’ in the hope that this will halt seizures without leaving large cerebral deficits. This is exactly the same basis of surgery that was expounded by Horsley and others in the 1880s. Indeed, the types of operation have also not changed fundamentally in the last 50 years (e.g. temporal lobectomy, lesionectomy, tailored resections, colostomy, hemispherectomy, awake craniotomy). The non-resective approaches (e.g. cortical stimulation, ablation of pathways) also have a long history stretching back to the early twentieth century, and although technology has changed, the principles and, indeed to a large degree, the outcomes of non-resective operations have not. Nevertheless, in the last 10 years or so, the major focus of surgical research has been on stimulation both invasive and external. The first therapy to gain wide acceptance has been vagal nerve stimulation, on the basis of trials which have been critical in various ways, and certainly the routine clinical experience of vagal nerve stimulation is less positive than the trials have indicated. More recently, a series of invasive stimulation technologies have been studied; divided into ‘scheduled stimulation’ (e.g. bilateral stimulation of the anterior thalamus and hippocampal stimulation) and ‘responsive stimulation’ (e.g. of the cortical epileptic focus or hippocampus). External non-invasive stimulation methods through the trigeminal nerve, and via transmagnetic cranial stimulation, have also been explored. In these areas, it has been possible to perform randomized controlled trials (uniquely in epilepsy surgery) and several systems have been licensed by the EMA and FDA. It must be admitted though, the results of stimulation generally on epilepsy control have been modest.

Much of the current emphasis of surgery is fuelled by economic factors in market-driven medical systems, where surgical activity brings in large monetary reward, rather than on clinical factors. The current reality is that although epilepsy surgery is a fashionable and much-promoted topic, it remains a marginal treatment, unsuitable for the vast majority of patients and with often suboptimal outcomes.

Non-pharmaceutical, non-surgical approaches to treatment (i.e., lifestyle, nutrition, socio-psychological factors, etc.) have been almost totally ignored in orthodox medicine in the post-war years, as the technologies of modern medicine and surgery and of pharmaceutical science have dominated thought. This perhaps is the biggest change in the past 100 years.

The drug treatment in common use in 1996–2014, as reflected in the four editions of this book, are shown in Table 9. As can be seen, one very obvious development in the past 50 years has been the narrowing of treatment options in professional practice to only those drugs that have been assessed in blinded and randomized trials and that have shown superiority over placebo (i.e. have biological action). Patients are often not satisfied with this, and alternative and complementary medicines are widely sought (for the common remedies used see Chapter 22) as well as other physical non-medical approaches. Furthermore, orthodox medicine has removed its focus from consideration of diet, hygiene and modes of living which were so much part of conventional therapy, and which were a large component of the medical consultation at least until the period of the Second World War. It is interesting to speculate on the degree to which the much more evidence-based approach of today has improved overall outcome (there is little synoptical study of this) or alleviated suffering. Therapy has undoubtedly improved, but the focus on drugs and surgery; to a significant extent commercially fuelled, has tended to protocolize medicine and to dehumanize therapy. What has been gained on one hand might have been lost on the other, and I suspect the picture is more complicated than often believed.

Acknowledgement

Some of the tables and text are adapted from the historical introductions in previous editions of this book [1,2,3] and from the author’s contributions to the publications around the ILAE centenary and other works [10,14,17,18,19,20]. The sources of unreferenced material in this chapter are found in references [6,10,15,19,20]. This work was undertaken at UCLH/UCL which receives a proportion of its funding from the Department of Health’s NIHR Biomedical Research Centre’s funding scheme.
Table 1 Non-bromide medicinal products used in the treatment of epilepsy 1857–1910.

<table>
<thead>
<tr>
<th>Category</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant-based (herbals)</td>
<td>Aconite (wolf’s bane), adonis vernalis, bryonia, cannabis, calabar bean, conium (hemlock), cotyledon umbilicus (penny wort), ergot, digitalis, gelsemium sempervirens (yellow jasmine), hydrastine, indigo, mistletoe, opium (and codeia), picrotoxin (from connulus indicus), piscidia erthrina (fishfuffle) rue, santonin (artemisia), selenium (marsh parsley), simulo (hysop), strophanthus, strychnine, valerian. Extracts of the solanaceae (nightshade) family were also widely used: atropine, belladonna, hyosicine, strophanthum.</td>
</tr>
<tr>
<td>Animal-based extracts</td>
<td>Bufo rana crotalin (rattlesnake venom), curare, thyroidin, toxins and antiserum</td>
</tr>
<tr>
<td>Simple chemicals</td>
<td>amylene hydrate, borax, caustium, coal tar (acetanilide, phenacetin, acetophenetidin), chinolin (quinoline), copper, copper sulphate, chloral hydrate, chloralamide, chloretone, iron, lead, nitroglycerine, osmic acid, pepto-mangan, potassium iodide, resorcin, sodium eosinate, silver nitrate, sulphonal, urethane, zinc (oxide, sulphate, acetate, valerianate, lactate, nitrate)</td>
</tr>
</tbody>
</table>

Source: Lists derived from [1,5,6,7,8,9,19].

Most of the above were used for chronic therapy. For the treatment of acute seizures in the nineteenth century, various compounds were widely used such as amyl nitrite, atropine, chloral, chloroform, ether, nitroglycerine, paraldehyde. Others less frequently recommended included some by inhalation: alcohol, ammonia, assafetida (inhalaion or enema), camphor, curare (by injection), hydrocyanic acid, lavender, musk, turpentine, veratrum (American hellebore).

Table 2 Antiepileptic drugs listed by Gowers in 1881 and 1901.

<table>
<thead>
<tr>
<th>Drugs of ‘definite benefit’</th>
<th>Drugs of ‘doubtful value’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromide (ammonium, potassium, sodium, lithium, strontium)</td>
<td>Camphor</td>
</tr>
<tr>
<td>Digitalis</td>
<td>Aconite</td>
</tr>
<tr>
<td>Belladonna</td>
<td>Hydrocyanic acid</td>
</tr>
<tr>
<td>Atropine</td>
<td>Iodide of potassium</td>
</tr>
<tr>
<td>Stramonium</td>
<td>Mistletoe</td>
</tr>
<tr>
<td>Cannabis indica</td>
<td>Turpentine</td>
</tr>
<tr>
<td>Gelsemium sempervirens</td>
<td>Cocculus indicus (picrotoxin)</td>
</tr>
<tr>
<td>Opium</td>
<td>Choral</td>
</tr>
<tr>
<td>Nitroglycerine</td>
<td>Amylene hydrate</td>
</tr>
<tr>
<td>Zinc</td>
<td>Nitrate of silver</td>
</tr>
<tr>
<td>Borax (sodium biborate)</td>
<td>Sulphate of copper</td>
</tr>
<tr>
<td>Iron</td>
<td>Benzoate of soda</td>
</tr>
<tr>
<td>Hyoscine</td>
<td>Piscidia erthrina</td>
</tr>
<tr>
<td>Strophanthus</td>
<td>Codeia</td>
</tr>
<tr>
<td>(Of this list, bromide was seen by Gowers as the primary treatment, and all the others ‘adjuncts’)</td>
<td>Calabar bean</td>
</tr>
<tr>
<td>Ergot</td>
<td>Sclerotic acid</td>
</tr>
<tr>
<td>Sclerotic acid</td>
<td>Nitrite of amyl</td>
</tr>
<tr>
<td>Nitrite of amyl</td>
<td>Bromide of aluminium, nickel, camphor, rubidium and ammonium, iodine, chorine, bromaline (bromine and formaldehyde derivatives), bromapin (bromine and sesame oil), hydrobromic acid</td>
</tr>
<tr>
<td>Osmic acid</td>
<td>Curare</td>
</tr>
<tr>
<td>Curare</td>
<td>Hydrastin</td>
</tr>
<tr>
<td>Hydrastin</td>
<td>Chinolin</td>
</tr>
<tr>
<td>Chinolin</td>
<td>Resorcin</td>
</tr>
<tr>
<td>Resorcin</td>
<td>Antipyrine</td>
</tr>
<tr>
<td>Antipyrine</td>
<td>Acetanilide</td>
</tr>
<tr>
<td>Acetanilide</td>
<td>Thyroidin</td>
</tr>
</tbody>
</table>

Source: Data from Gowers 1881 [7].

Gowers also notes that zinc and opium were generally of not much use but good in hysteroid convulsions; digitalis, cannabis, belladonna, atropine were thought useful only in combination with bromide.
Table 3 Therapy in 1907: drugs recommended by William Aldren Turner.

<table>
<thead>
<tr>
<th>Drugs of definite benefit</th>
<th>Drugs of limited benefit</th>
<th>Drugs of no special benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromide — sodium and potassium primarily or Gélineau’s formula</td>
<td>Zinc salts (oxide, valerianate, lactate)</td>
<td>Monobromate of camphor</td>
</tr>
<tr>
<td>Other synthetic formulations (e.g. bromipin, bromaline, bromocarpine) or salts (e.g. strontium or ammonium) had, in Turner’s view, little advantage</td>
<td>Opium</td>
<td>Eosinate of sodium</td>
</tr>
<tr>
<td>Chloral hydrate</td>
<td>Strychnine</td>
<td>Chloretone</td>
</tr>
<tr>
<td>Borax</td>
<td>Chloride of calcium</td>
<td>Antipyrin</td>
</tr>
<tr>
<td>Belladonna</td>
<td>Atropine</td>
<td>Atropine</td>
</tr>
<tr>
<td></td>
<td>Glycerophosphates<sup>a</sup></td>
<td>Intestinal antiseptics<sup>b</sup></td>
</tr>
</tbody>
</table>

Source: Data from Turner 1907 [8].

For status epilepticus, Turner recommended chloral, chloroform, morphia and bromides (including intrathecal bromide solutions).

^a For neurasthenic symptoms.

^b In view of the theories of autointoxication (which Turner found unconvincing).

Other drugs that Turner found of no value included sulpho-carbonate of soda, salol (phenyl salicylate), beta naphthol, salicylate of bismuth and ‘a host of other remedies of this character’.

Table 4 Drugs listed in the treatment of epilepsy by SAK Wilson in 1940.[*]

<table>
<thead>
<tr>
<th>Drugs of definite benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromide (in any of the following salts: sodium, potassium, ammonium, lithium, calcium, calcium bromine galactogluconate)</td>
</tr>
<tr>
<td>Bromide combinations</td>
</tr>
<tr>
<td>Phenobarbitone (Luminal)</td>
</tr>
<tr>
<td>N-methylethylphenylmalonyl urea (Prominal)</td>
</tr>
<tr>
<td>Borax</td>
</tr>
<tr>
<td>Belladonna (sometimes with bromide or bromide and caffeine)</td>
</tr>
<tr>
<td>Nitroglycerine (sometimes with strychnine and bromide)</td>
</tr>
<tr>
<td>Dialacetin (a mixture of the hypnotic allobarbital (Dial) with allylparacetaminophenol)</td>
</tr>
</tbody>
</table>

Source: Data from Wilson 1940 [11].

[*] Although Wilson [11] was published in 1940, this was after his death and the draft manuscript was completed (in 1937), edited and published posthumously.
<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Common or trade name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbiturates</td>
<td></td>
</tr>
<tr>
<td>Phenylethyl barbituric acid</td>
<td>Gardenal</td>
</tr>
<tr>
<td>Phenylethyl malonylurea</td>
<td>Luminal, Phenobarbital, Phenobarbitone</td>
</tr>
<tr>
<td>Methylphenyl barbituric acid</td>
<td>Mephebarbital, Rutonal</td>
</tr>
<tr>
<td>Methylphenylethyl barbituric acid</td>
<td>Isonal, Meberal, Prominal</td>
</tr>
<tr>
<td>Methyleneethyl barbituric acid</td>
<td>Gemonil</td>
</tr>
<tr>
<td>Combinations with barbiturate</td>
<td></td>
</tr>
<tr>
<td>Phenylethyl barbituric acid, belladonna and caffeine</td>
<td>Alepsal</td>
</tr>
<tr>
<td>Phenylethyl barbituric acid and amphetamine</td>
<td>Ortenal</td>
</tr>
<tr>
<td>Oxazolidine diones</td>
<td></td>
</tr>
<tr>
<td>Trimethyl oxazolidine dione</td>
<td>Absentol, Epidione, Minoaleviatin, Petilep, Trimethadione, Tridione</td>
</tr>
<tr>
<td>Dimethylmethyl oxazolidine dione</td>
<td>Paramethadione, Paradione</td>
</tr>
<tr>
<td>Diphenyl oxazolidine dione</td>
<td>Epidon</td>
</tr>
<tr>
<td>Allylmethyl oxazolidine dione</td>
<td>Malidone</td>
</tr>
<tr>
<td>Hydantoins</td>
<td></td>
</tr>
<tr>
<td>Diphenyl hydantoin (or diphenyl hydantoin sodium)</td>
<td>Alleviatin, Alepsin, Antipil, Antisacer, Comitiona, Convulsin, Dihydan, Dilantin, Diphenito, Ditoinate, Epamin, Epanutin, Eptoin, Phenytoine, Solantyl</td>
</tr>
<tr>
<td>Methylidiphenyl hydantoin</td>
<td>Melantoin</td>
</tr>
<tr>
<td>Methylphenylethyl hydantoin</td>
<td>Mesantoin, Phenantoil, Sedantoinal</td>
</tr>
<tr>
<td>Methylidibromophenylethyl hydantoin</td>
<td>Anirrit</td>
</tr>
<tr>
<td>Dimethylidithio hydantoin</td>
<td>Thiomedan</td>
</tr>
<tr>
<td>Sodium phenylthienyl hydantoin</td>
<td>Thiantoin, Phenthylolate</td>
</tr>
<tr>
<td>Methylphenyl hydantoin</td>
<td>Nuarone</td>
</tr>
<tr>
<td>Combinations with hydantoins</td>
<td></td>
</tr>
<tr>
<td>Diphenyl hydantoin and phenobarbital</td>
<td>Hydantoinal, comitoina compound</td>
</tr>
<tr>
<td>Diphenyl hydantoin, phenobarbital and caffeine</td>
<td>Antisacer compound, Apilep</td>
</tr>
<tr>
<td>Diphenyl hydantoin, phenobarbital and desoxyphedrine</td>
<td>Isosolantyl, Phelantin</td>
</tr>
<tr>
<td>Methylphenylhydantoin and phenobarbital</td>
<td>Hydantol</td>
</tr>
<tr>
<td>Diphenyl hydantoin and methylphenylethyl barbituric acid</td>
<td>Comital, Mebaroin</td>
</tr>
<tr>
<td>Diphenyl hydantoin, methylphenylethyl barbituric acid and phenobarbital</td>
<td>Comital L</td>
</tr>
<tr>
<td>Other types</td>
<td></td>
</tr>
<tr>
<td>Phenylacetylurea</td>
<td>Epiclase, Fenilep, Phenacemide, Phenurone</td>
</tr>
<tr>
<td>Phenylethylhexahydroprimidine dione</td>
<td>Mysoline, Primidone</td>
</tr>
<tr>
<td>Benzchlorpropamide</td>
<td>Hibicon, Posedrine</td>
</tr>
<tr>
<td>Methylalphaphenyl succinimide</td>
<td>Lifene, Milontin</td>
</tr>
<tr>
<td>Acetazolamide</td>
<td>Diamox</td>
</tr>
<tr>
<td>Alkaline borotratrates</td>
<td>Several preparations</td>
</tr>
<tr>
<td>Glutamic acid (or glutamic acid-HCl)</td>
<td>Acidulin, Glutan-HCl, Glutamicol</td>
</tr>
<tr>
<td>Bromides</td>
<td>Large numbers of preparations (in three categories: alkaline bromides and alkaline earths: polybromide; organic bromides; bromide in combination with other agents)</td>
</tr>
</tbody>
</table>

Table 6 Lennox’s ‘therapeutic arsenal’: drugs in common use in the USA around 1960.

<table>
<thead>
<tr>
<th>Non-commercial official name</th>
<th>Patented trade name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand mal and psychomotor seizures</td>
<td></td>
</tr>
<tr>
<td>Bromides</td>
<td>Bromides</td>
</tr>
<tr>
<td>Phenobarbital(^a)</td>
<td>Luminal</td>
</tr>
<tr>
<td>Methobarbital</td>
<td>Mebaral</td>
</tr>
<tr>
<td>Diphénylhydantoin(^a)</td>
<td>Dilantin</td>
</tr>
<tr>
<td>Mesantoin</td>
<td>Mesantoin</td>
</tr>
<tr>
<td>Ethotoin</td>
<td>Peganone</td>
</tr>
<tr>
<td>Primidone(^a)</td>
<td>Mysoline</td>
</tr>
<tr>
<td>Phenacemide</td>
<td>Phenurone</td>
</tr>
<tr>
<td>Methsuximide(^a)</td>
<td>Celontin</td>
</tr>
<tr>
<td>Acetazolamide(^b)</td>
<td>Diamox</td>
</tr>
<tr>
<td>Petit mal</td>
<td></td>
</tr>
<tr>
<td>Trimethadione(^b)</td>
<td>Tridione</td>
</tr>
<tr>
<td>Paramethadione(^a)</td>
<td>Paradione</td>
</tr>
<tr>
<td>Phensuximide(^a)</td>
<td>Milontin</td>
</tr>
<tr>
<td>Ethylmethylsuccinimide</td>
<td>Zarontin</td>
</tr>
<tr>
<td>Quinacrine hydrochloride</td>
<td>Atabrine</td>
</tr>
<tr>
<td>Metharbital</td>
<td>Gemonil</td>
</tr>
</tbody>
</table>

\(^a\)Drugs of initial choice.
\(^b\)Drugs of second choice.
Phenurone and Diamox were noted to be often effective against petit mal as well, and phensuximide to be often effective against grand mal.

Table 7 Drug treatments reported to be used in status epilepticus 1857–1973.

ACTH	Hyoscine hydrobromate
Aldosterone	Lignocaine
Amyl nitrate	Morphia/apomorphine
Amylene hydrate	Oxygen inhalation
Amyline choral	Paraldehyde
Amylobarbital	Pentobarbital
Atropine sulphate	Phenobarbital
Bromide of potassium	Phenytoin
Bromide salts (various) intrathecal	Procaine
Camphor (subcutaneous)	Quinine sulphate
Chlordiazepoxide	Scopolamine (hydodermic)
Chlormethiazole	Sinapismes
Chloral hydrate	Strophanthus
Chloroform	Suxamethonium
Clonazepam	Tribromethanol
Diazepam	Tridione
Diethyl barbituric acid	D-Tubocurarine
Digitalis	Urea

Source: Data from Neligan and Shorvon 2009 [10].

In addition to these drugs, physical treatments were also strongly recommended including: cold douches or baths, darkened room, rest and quiet, lumbar puncture/CSF drainage, multiple enemata and irrigation of the bowel, saline infusions and venesection.
Table 8 Drugs in clinical trial development (presented at the biannual Eilat Conference on New Antiepileptic Drugs 1992–2014).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flunarizine</td>
<td>CGP3 101</td>
<td>Dezinamide</td>
<td>534U87 (a lamotrigine derivative)</td>
<td>AWD 131–138 (imepitoine)</td>
<td>Carabersat (SB-204269)</td>
</tr>
<tr>
<td>Felbamate</td>
<td>Desinamide</td>
<td>Felbamate</td>
<td>ADCI</td>
<td>DP-VPA (DP16)</td>
<td>Conantokin-G (CGX-1007)</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>Fluzinamide</td>
<td>Fosphenytoin</td>
<td>AWD 131–138 (imepitoine)</td>
<td>Harkeroside (lacosamide: SPM 927)</td>
<td>Fluorofelbamate</td>
</tr>
<tr>
<td>Oxcarbazpine</td>
<td>Gabapentin</td>
<td>Gabapentin</td>
<td>DP16 (DP-VPA)</td>
<td>NPS 1776</td>
<td>Lacosamide (SPM 927)</td>
</tr>
<tr>
<td>Remacemide</td>
<td>Lamotrigine</td>
<td>Lamotrigine</td>
<td>Ganaxolone (CCD 1042)</td>
<td>NW-1015</td>
<td>Pregabalin</td>
</tr>
<tr>
<td>hydrochloride</td>
<td>Remacemide</td>
<td>Levitracetam</td>
<td>Levetiracetam (UCB LO59)</td>
<td>Remacemide</td>
<td>Retigabine</td>
</tr>
<tr>
<td>Stiripentol</td>
<td>Oxcarbazepine</td>
<td>Oxcarbazepine</td>
<td>Losigamone</td>
<td>Retigabine (D-23129)</td>
<td>Retigabine</td>
</tr>
<tr>
<td>Tiagabine</td>
<td>Remacemide</td>
<td>Remacemide</td>
<td>Pregabaline (CI-1008; isobutyl GABA)</td>
<td>Remacemide</td>
<td>Valrocemide (TV 1901)</td>
</tr>
<tr>
<td>Topiramate</td>
<td>hydrochloride</td>
<td>hydrochloride</td>
<td>Remacemide hydrochloride</td>
<td>Retigabine (D-29129)</td>
<td>Valrocemide (TV 1901)</td>
</tr>
<tr>
<td>Vigabatrin</td>
<td>Striperitol</td>
<td>Retigabine (D-23129)</td>
<td>Ralitoline</td>
<td>Ralitoline</td>
<td>Valrocemide (TV 1901)</td>
</tr>
<tr>
<td></td>
<td>Tiagabine</td>
<td>Ralitoline</td>
<td>Ralitoline</td>
<td>Rufinamide (CGP 33101)</td>
<td>Valrocemide (TV 1901)</td>
</tr>
<tr>
<td></td>
<td>UCB LO59</td>
<td>Rufinamide (CGP 33101)</td>
<td>Rufinamide</td>
<td>Soretolide (D2916)</td>
<td>Valrocemide (TV 1901)</td>
</tr>
<tr>
<td></td>
<td>(levetiracetam)</td>
<td>Tiagabine</td>
<td>Retigabine</td>
<td>Soretolide</td>
<td>Carabersat (SB-204269)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valrocemide</td>
<td>Retigabine</td>
<td>Soretolide</td>
<td>Carabersat (SB-204269)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(TV 1901O)</td>
<td>Retigabine</td>
<td>Soretolide</td>
<td>Carabersat (SB-204269)</td>
</tr>
</tbody>
</table>

Source: Data from Eilat Conferences [21,22,23,24,25,26,27,28,29,30].

Drugs highlighted in green are those that were subsequently licensed.

Losigamone was mentioned in programme but not the publication.

RWJ-333369 was mentioned in programme but not the publication.

NS1209 was mentioned in the publication but not the programme.

Section on ‘Emergency therapy’ for drugs used in the first time; details from programme, not yet published.

Harkeroside was sold on in various steps eventually to UCB and renamed lacosamide.

Iempitoine is licensed for use in veterinary medicine for dogs.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atipamezole</td>
<td>BIA 2-093 (eslicarbazepine acetate)</td>
<td>Fluorofelbamate</td>
<td>T2000</td>
<td>D-deoxy-glucose</td>
<td>D-deoxy-glucose</td>
</tr>
<tr>
<td></td>
<td>Fluorofelbamate</td>
<td></td>
<td>Brivaracetam</td>
<td>Brivaracetam</td>
<td>Adenosine-releasing</td>
</tr>
<tr>
<td></td>
<td>NPS 1776</td>
<td></td>
<td>Carisbamate (RWJ-333369)</td>
<td>Carisbamate (UCB 34714)</td>
<td>silk</td>
</tr>
<tr>
<td></td>
<td>Pregabalin</td>
<td></td>
<td>Flurofembamate</td>
<td>Flurofembamate</td>
<td>Allopregnanolone</td>
</tr>
<tr>
<td></td>
<td>Retigabine</td>
<td></td>
<td>Ganaxolene</td>
<td>Ganaxolene</td>
<td>SAGE547</td>
</tr>
<tr>
<td></td>
<td>RWJ-333369</td>
<td></td>
<td>Huperzine A</td>
<td>Huperzine A</td>
<td>AMP-X-0079</td>
</tr>
<tr>
<td>(carisbamate)</td>
<td>Safinamide</td>
<td></td>
<td>JZP-4</td>
<td>JZP-4</td>
<td>BGG492</td>
</tr>
<tr>
<td></td>
<td>SPM 927 (lacosamide)</td>
<td></td>
<td>Lacosamide</td>
<td>Lacosamide (SPM 927)</td>
<td>Brivaracetam</td>
</tr>
<tr>
<td></td>
<td>Striperentol</td>
<td></td>
<td>NS1209</td>
<td>NAX 5055</td>
<td>Ganaxolone</td>
</tr>
<tr>
<td></td>
<td>Talampanel</td>
<td></td>
<td>Propylisopropyl acetamide (PID)</td>
<td>Propylisopropyl acetamide (PID)</td>
<td>ICA-105665</td>
</tr>
<tr>
<td></td>
<td>UCB 34714 (brivaracetam)</td>
<td></td>
<td>Retigabine</td>
<td>Retigabine</td>
<td>Imepitoin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tonabersat</td>
<td>Tonabersat</td>
<td>Perampanel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valrocehide</td>
<td>Valrocehide</td>
<td>Propylisopropyl acetamide (PID)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valnoctamide</td>
<td>Valnoctamide (VCD)</td>
<td>Propylisopropyl acetamide (PID)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YKP3089</td>
<td>YKP3089</td>
<td>Retigabine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T2007 (sodium 5,5-diphenylbarbiturate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Valnoctamide (VCD) and sec-Butylpropylacetamide (SPD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YKP3089</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YKP3089</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D-deoxy-glucose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Valnoctamide (VCD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Valnoctamide (VCD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VLB-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YKP3089</td>
</tr>
</tbody>
</table>
Table 9 Drugs used in the treatment of epilepsy 1996–2014 as taken from the four editions of the Treatment of Epilepsy.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clobazam</td>
<td>Acetazolamide</td>
<td>Acetazolamide</td>
<td>Acetazolamide</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>Carbamazepine</td>
<td>ACTH and corticosteroids</td>
<td>ACTH and corticosteroids</td>
</tr>
<tr>
<td>Other benzodiazepines</td>
<td>Clobazam</td>
<td>Benzodiazepines used primarily for chronic treatment (clobazam, clonazepam, clorazepate, nitrazepam)</td>
<td>Benzodiazepines used primarily for chronic treatment (clobazam, clonazepam, clorazepate, nitrazepam)</td>
</tr>
<tr>
<td>(clorazepate, diazepam, lorazepam, midazolam, nitrazepam)</td>
<td>Clonazepam</td>
<td>(clobazam, clonazepam, clorazepate, nitrazepam)</td>
<td>(clobazam, clonazepam, clorazepate, diazepam, lorazepam, midazolam, nitrazepam)</td>
</tr>
<tr>
<td>Carbamazepine and oxcarbazepine</td>
<td>Short-acting and other benzodiazepines (diazepam, lorazepam, midazolam, clorazepate, nitrazepam)</td>
<td>Benzodiazepines used primarily for emergency treatment (diazepam, lorazepam, midazolam)</td>
<td>Brivaracetam<sup>a</sup></td>
</tr>
<tr>
<td>Ethosuximide and methsuximide</td>
<td>Ethosuximide</td>
<td>Brivaracetam<sup>a</sup></td>
<td>Carbamazepine</td>
</tr>
<tr>
<td>Felbamate</td>
<td>Felbamate</td>
<td>Carisbamate<sup>a</sup></td>
<td>Ethosuximide</td>
</tr>
<tr>
<td>Gabapentin</td>
<td>Gabapentin</td>
<td>Carbamazepine</td>
<td>Ethosuximide</td>
</tr>
<tr>
<td>Lamotriginine</td>
<td>Lamotriginine</td>
<td>Ethosuximide</td>
<td>Ethosuximide</td>
</tr>
<tr>
<td>Phenobarbitone</td>
<td>Levetiracetam</td>
<td>Levetiracetam</td>
<td>Felbamate</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Oxcarbazepine</td>
<td>Oxcarbazepine</td>
<td>Gabapentin</td>
</tr>
<tr>
<td>Topiramate</td>
<td>Phenobarbital, primidone and other barbiturates (methylbarbital, methylenebarbital, barbexacone)</td>
<td>Phenobarbital, primidone and other barbiturates (methylbarbital, methylenebarbital, barbexacone)</td>
<td>Lacosamide</td>
</tr>
<tr>
<td>Valproate</td>
<td>Valproate</td>
<td>Valproate</td>
<td>Lamotrigine</td>
</tr>
<tr>
<td>Vigabatrin</td>
<td>Vigabatrin</td>
<td>Vigabatrin</td>
<td>Levetiracetam</td>
</tr>
<tr>
<td>Other drugs used in the treatment of epilepsy (acetazolamide, ACTH, allopurinol, ethotoin, bromides, mephentoin, paraldehyde, phenacemide, trimethadione)</td>
<td>Other drugs more rarely used in the treatment of epilepsy (ACTH, allopurinol, bromide, ethotoin, mephentoin, paraldehyde, phenacemide, trimethadione)</td>
<td>Other drugs more rarely used (allopurinol, bromide, ethotoin, furosemide, mephentoin, phenacemide, trimethadione — oral use)</td>
<td>Other drugs rarely used (bromide, lidocaine, methsuximide, paraldehyde, sulfiame)</td>
</tr>
<tr>
<td>Other drugs used in the treatment of epilepsy (acetazolamide, ACTH, allopurinol, ethotoin, bromides, mephentoin, paraldehyde, phenacemide, trimethadione)</td>
<td>Other drugs used in the treatment of epilepsy (acetazolamide, ACTH, allopurinol, ethotoin, bromides, mephentoin, paraldehyde, phenacemide, trimethadione)</td>
<td>Other drugs used in the treatment of epilepsy (acetazolamide, ACTH, allopurinol, ethotoin, bromides, mephentoin, paraldehyde, phenacemide, trimethadione)</td>
<td>Other drugs rarely used (bromide, lidocaine, methsuximide, paraldehyde, sulfiame)</td>
</tr>
</tbody>
</table>

Source: Lists derived from Shorvon [1,2,3] and the current book.

In addition to the above licensed drugs, each edition of the book has listed drugs in early clinical development:

1st edition: etecobarb, levetiracetam, losigamone, ralitoline, remacemide, stiripentol, taltrimide, tiagabine, zonisamide.

2nd edition: AWD 131-138, carabersat (SB-204269), conantokin-G (CGX-1007), ganaxolone, harkoseride (SPM 927; ADD 234037), NPS 1776, retigabine (D-23129), safinamide (NW-1015; PNU-151774E), SFD421 (DP16; DF-VPA), talampanel (LY300164; GIKY 53773), valrocemide (TV 1901).

4th edition: allopregnanolone (SAGE-547), cannabinoids, 2-deoxy-o-glucose, everolimus, ganaxolone, huperzine A (NS-001), NAX 810-2, pitolisant, PRX00023 (naluzotan), selurampanel, tonabersat, YKP3089.

^aDrug not licensed but in late-stage clinical development.
References

